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1 Newton’s laws of motion

1.1 Linear motion

In a single dimension, vector quantities like v⃗ can be repre-
sented with scalars. When this is done, the position after
time t:

x1 = x0 +

∫ t1

t0

v dt

In uniform motion, v is constant, so:

x1 = x0 + vt|t1t0
= x0 + v(t1 − t0)

= x0 + v∆t

Given a graph of position over time, the slope of the line
connecting two points is the average velocity between
them, equal to ∆x/∆t. The slope of the tangent at some
point is the instantaneous velocity:

v ≡ lim
∆t→0

∆x

∆t
=

dx

dt

Given a graph of velocity over time, the slope of the
line connecting two points is the average acceleration,
∆v/∆t, while the slope of the tangent is the instanta-
neous acceleration:

a ≡ lim
∆t→0

∆v

∆t
=

dv

dt
=

d2x

dt2

The velocity after a period of acceleration:

v1 = v0 +

∫ t1

t0

a dt

Assuming uniformly accelerated motion:

v1 = v0 + a∆t

so that:

x1 = x0 +

∫ t1

t0

v dt

= x0 +

∫ t1

t0

v0 + a(t− t0) dt

This produces:

x1 = x0 +
[
v0t+

1

2
at2 − at0t

]t1
t0

= x0 + v0∆t+
1

2
at21 −

1

2
at20 − at0t1 + at20

= x0 + v0∆t+
1

2
a
(
t21 − 2t0t1 + t20

)
Finally, since:

(t1 − t0)
2 = t21 − 2t0t1 + t20
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the displacement after a period of uniform acceleration:

x1 = x0 + v0∆t+
1

2
a(∆t)2

This is confirmed geometrically:

t0 t1

v1

v0

v0∆t

1
2
a(∆t)2

Because ∆t = (v1 − v0)/a:

x1 = x0 + v0

(
v1 − v0

a

)
+

1

2
a

(
v1 − v0

a

)2

= x0 +

(
2v0v1
2a

− 2v2
0

2a

)
+

(
v2
1

2a
− 2v0v1

2a
+

v2
0

2a

)

= x0 +
v2
1 − v2

0

2a

This allows the velocity change to be expressed relative to
the displacement, rather than the time elapsed:

v2
1 = v2

0 + 2a(x1 − x0)

As a result:

v2
1 − 2ax1 = v2

0 + 2ax0

So that v2 − 2ax remains constant over time.

1.2 Motion on an inclined plane

The acceleration due to gravity g is always positive. It
represents the magnitude of the actual acceleration, while
ignoring its direction. g varies at different points on the
Earth’s surface, but the standard value is approximately
9.81m/s2.

An object is in free fall when gravity is the only force
acting upon it. If an object is sliding down a frictionless
inclined plane, the free fall acceleration a⃗f that it would
experience can be decomposed into two vectors, a⃗∥ that is
parallel to the plane, and a⃗⊥ that is perpendicular to it:

a⃗f = a⃗∥ + a⃗⊥

If the angle between the plane and the planet’s surface is
θ, then the angle between a⃗f and a⃗⊥ is also θ:

a⃗∥

a⃗⊥

a⃗f

θ
θ

Therefore, the magnitude of the parallel acceleration:

a∥ = g sin θ

This is the component that actually accelerates the object,
since a⃗⊥ is opposed by the plane.

1.3 Force

Weight w⃗ describes the force exerted on an object by grav-
ity. Its magnitude w = mg.

When one object pulls another, it exerts tension force T⃗ .
The tension force exerted by a cable has the same direc-
tion as the cable itself. When one object presses against
another, the second object exerts a normal force n⃗ against
the first that is perpendicular to its own surface. Tension
and normal forces are the result of molecular bonds, which
behave like springs with pulled or pressed.

A superposition of forces acting on one object produces
a single net or resultant force. Inertia describes the in-
nate tendency of objects to resist changes to their velocity.
According to Newton’s first law (also known as the law
of inertia):

The velocity of an object will remain constant if and
only if the net force acting upon it is zero.

According to Newton’s second law:

An object with mass m, subject to net force F⃗ , will
experience acceleration a⃗ = F⃗ /m.

This implicitly defines the inertial mass of the object:

m =
F

a

When net force remains constant, acceleration is constant.
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The SI unit of force is the newton:

N = kg ·m/s2

The pound is a force unit in the English system, equal to
about 4.45N.

An object that is pushed or pulled to produce uniform ac-
celeration a in the vertical axis is subject to two forces: the
normal or tension force Fn, and the actual weight w = mg.
The first of these creates the sensation of weight. Since
Fn −mg must equal ma, this apparent weight:

Fn = m(g + a)

= w

(
1 +

a

g

)
For an object in free fall, a = −g, and the apparent weight
is zero. The actual weight is still mg.

A free-body diagram places an object at the origin of the
coordinate system, and shows all the forces acting upon it,
along with the net force vector:

w⃗

n⃗

T⃗

F⃗N

An object is in mechanical equilibrium when this net
force (and thus the acceleration) is zero. When it is also in
motion, the object is in dynamic equilibrium. When it
is also at rest, the object is in static equilibrium. Note
that these two differ only in the choice of reference frame.

1.4 Resistive forces

Static friction f⃗s acts on objects that rest on a surface.
Its direction is opposite the surface-relative motion that
would result if there were no static friction. Kinetic fric-
tion f⃗k acts on objects that slide on some surface. Its
direction is opposite that of the motion. Drag D⃗ acts on
objects that move through fluids. Its direction is also op-
posite that of the motion. Forces that always oppose the
direction of motion are called resistive forces.

Static friction is largely caused by molecular bonding be-
tween surfaces; note that (due to their roughness) only
0.01% of these areas may actually touch. Kinetic friction
is produced by weaker attractive forces between molecules.

The static friction force has no fixed magnitude. An object
held by static friction exerts a force f⃗s that is equal to and
opposite the motive force acting upon it. There is a max-
imum force beyond which static friction fails to operate,
however. In the simplest model, this maximum:

fs:max ≈ µsn

with µs being the coefficient of static friction, and n
the magnitude of the normal force exerted by the surface.
fs:max determines the angle of repose, this being the angle
at which a resting object will slip from an inclined surface.

Objects that slide are subject to kinetic friction force f⃗k
that opposes the direction of motion:

fk ≈ µkn

with µk being the coefficient of kinetic friction. In
practice, surface area and speed also contribute. Note that
fk is less than fs:max.

Rolling motion is opposed by rolling friction f⃗r, which
acts like kinetic friction:

fr ≈ µrn

The coefficient of rolling friction µr is generally much
less than µk.

Drag is too complex to be easily generalized. At lower
speeds, the relationship between drag and speed is approx-
imately linear. When an object moves fast enough to pro-
duce turbulence:

D ≈ 1

2
Cd ρAv2

with ρ being the density of the fluid, A the object’s cross-
sectional area, and Cd the drag coefficient, which de-
pends on the shape of the object. Cd is often between 0.1
and 1.5.

An object falling straight down through the atmosphere
will accelerate until D = w. Equating D with mg gives the
object’s terminal speed:

vt ≈
√

2mg

Cd ρA
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1.5 Planar motion

A position vector is drawn from the origin to a position
in space:

r⃗ = xı̂+ yȷ̂

A position change is displayed as a displacement, drawn
from the start position to the end:

∆r⃗ = r⃗1 − r⃗0

= (x1 − x0)̂ı+ (y1 − y0)ȷ̂

= ∆xı̂+∆yȷ̂

A displacement is not a distance. It is a vector quantity
(like velocity) and its direction is significant.

A motion diagram shows the position of an object at
equally spaced points in time, with velocity vectors con-
necting each point with the next. Because they cover inter-
vals of time, the velocity vectors are necessarily averages.
Where possible, the acceleration vector representing the
difference between v⃗n and v⃗n+1 is shown to emanate from
the point joining v⃗n and v⃗n+1. Points showing no average
acceleration are labeled with the zero vector 0⃗:

0⃗v⃗

v⃗

v⃗

v⃗

a⃗

a⃗

The instantaneous velocity:

v⃗ ≡ lim
∆t→0

∆r⃗

∆t
=

dr⃗

dt

=
dx

dt
ı̂+

dy

dt
ȷ̂

= vx ı̂+ vy ȷ̂

As ∆t approaches zero, ∆r⃗ becomes tangent with the tra-
jectory. Similarly:

a⃗ ≡ lim
∆t→0

∆v⃗

∆t
=

dv⃗

dt

=
dvx
dt

ı̂+
dvy
dt

ȷ̂

= ax ı̂+ ay ȷ̂

Planar motion can be modeled by decomposing a⃗ into a⃗x

and a⃗y, and then applying the linear motion model in both
dimensions.

Alternatively, acceleration can be decomposed such that
a⃗ = a⃗∥ + a⃗⊥, with component a⃗∥ parallel to v⃗, and a⃗⊥ per-
pendicular to it. a⃗∥ then gives the change in speed, and a⃗⊥

the change in direction. However, this causes the coordi-
nate system to change as v⃗ changes direction.

1.6 Projectile motion

Projectile motion results when an object moves along
horizontal and vertical axes while subject to no force but
gravity. More generally, given constant, non-zero acceler-
ation along one axis, and no acceleration along the other,
an object will follow a parabolic trajectory.

For projectile motion with initial velocity v⃗0 and launch
angle θ:

vx:0 = v0 cos θ

vy:0 = v0 sin θ

The only acceleration ay = −g. Therefore:

∆x = (v0 cos θ)∆t

∆y = (v0 sin θ)∆t− 1

2
g(∆t)2

If the projectile lands at the height it was launched, ∆y =
0, and:

0 = ∆t(v0 sin θ −
1

2
g∆t)

This equation has two roots, with the zero root represent-
ing the launch time, and the other that of the landing time.
Solving for the second of these:

∆t =
2v0
g

sin θ

Multiplying by vx:0 = v0 cos θ gives the horizontal displace-
ment. Because 2 sin θ cos θ = sin 2θ:

∆x =
v2
0

g
sin 2θ

The distance is maximized when the angle is 45°. Be-
cause sin(180°− α) = sinα, (90° − θ) can be substituted
for θ without changing the result. Launch angles of θ and
(90°− θ) therefore reach the same distance (with one pro-
ducing a flat trajectory and the other a steep one) as long
as 0 ≤ θ ≤ 90°.

The trajectory is found by expressing ∆t in terms of ∆x,
and then substituting in the ∆y equation:

∆y = (tan θ)∆x−
( g

2v2
0 cos2 θ

)
(∆x)2
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1.7 Relative motion

An inertial reference frame is a coordinate system
within which Newton’s first and second laws hold. A refer-
ence frame defined relative to a point that is accelerating
is not inertial, as free objects in that frame will appear
to accelerate spontaneously in the opposite direction. The
Earth is not a true inertial frame, because it accelerates
continually toward the sun.

If S and S′ are inertial reference frames, and if R⃗ is the
position of the second frame’s origin relative to the first:

R⃗ = S⃗′ − S⃗

then displacement vectors referencing the same point are
related by:

r⃗ = r⃗ ′ + R⃗

S

S′

r⃗ r⃗ ′

R⃗

y

x

y′

x′

If S′ moves relative to S at velocity V⃗ , and if they meet
when t = 0, then R⃗ = V⃗ t, and:

r⃗ = r⃗ ′ + V⃗ t

This is known as the Galilean transformation of posi-
tion. It follows that:

x = x′ + Vxt

y = y′ + Vyt

Since the horizontal velocity component in projectile mo-
tion is constant, projectile motion can be understood as
free fall motion viewed from a different reference frame,
and vice-versa.

If the point referenced by r⃗ and r⃗ ′ also moves:

dr⃗

dt
=

dr⃗ ′

dt
+

dR⃗

dt

which gives the Galilean transformation of velocity:

v⃗ = v⃗ ′ + V⃗

By contrast, the speed of a given light ray is identical in all
reference frames, no matter what the velocity of the frames
themselves. This produces the principles of special rel-
ativity.

As above:

dv⃗

dt
=

dv⃗ ′

dt
+

dV⃗

dt

However, the relative acceleration of inertial reference
frames is defined to be zero:

dV⃗

dt
= 0

This gives the Galilean transformation of accelera-
tion:

a⃗ = a⃗ ′

Neither the mass of an object nor the force exerted upon
it change when observed from different frames. Thus the
Galilean principle of relativity:

Newton’s laws, applying to phenomena viewed from
one inertial reference frame, still hold when the phe-
nomena are viewed from any such frame.

1.8 Uniform circular motion

Constant-speed motion in a circular path is called uniform
circular motion. The period T of a circular motion is
the time required to complete one revolution. Given radius
r, dividing the circumference by the period produces the
speed of the motion:

v =
2πr

T

The angular position θ of a point is the angle between the
positive x-axis and the line segment connecting the point
with the origin. The difference between two such angles is
an angular displacement.

In a circle of radius r, each radian of angular displacement
spans an arc of length r. More generally, when θ is mea-
sured in radians, the arc length:

s = θr

The angular velocity gives the rate at which the angle
changes, in radians per unit of time, with positive values
representing counterclockwise motion:

ω ≡ lim
∆t→0

∆θ

∆t
=

dθ

dt
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Because there are 2π radians in each revolution, and be-
cause the period cannot be negative:

|ω| = 2π

T
T =

2π

|ω|

Many circular motions can be described with the rtz co-
ordinate system, with the radial axis r projecting from
the object toward the circle’s center, the tangential axis t
tangent to the circle and projecting in the counterclockwise
direction, and the perpendicular axis z perpendicular to
the plane of motion and pointing toward the observer when
the circle is viewed from above.

Given vector A⃗ in the plane of motion, with angle ϕ be-
tween the vector and the r-axis:

ϕ

A⃗

A⃗t

A⃗r

A⃗r and A⃗t form a right angle at the object’s position, and
A⃗ divides that angle, so that its radial and tangential com-
ponents:

Ar = A cosϕ

At = A sinϕ

Conversely:

A =
√
A2

r +A2
t ϕ = arctan

(At

Ar

)
For an object in circular motion, the velocity components
vr and vz are zero, while the tangential velocity vt gives
the rate at which the object travels the circle. Given arc
length s and angular displacement θ, in radians:

vt =
ds

dt
=

dθ

dt
r = ωr

Though its speed never changes, an object in uniform cir-
cular motion experiences constant centripetal accelera-
tion. With each interval ∆t, the circle’s center combines
with the endpoints of displacement ∆r⃗ = v⃗∆t to form an
isosceles triangle. The equal sides of this triangle have
length r and interior angle θ. After two intervals, aligning
the start of ∆r⃗0 with the start of ∆r⃗1 forms a similar tri-
angle, the base of which gives the difference between ∆r⃗0
and ∆r⃗1:

θ

θ

α
α

∆r⃗0

∆r⃗0

∆r⃗1 ∆v⃗∆t

r

α

so that:

∆r⃗1 −∆r⃗0 = ∆v⃗∆t

Because the sides of similar triangles have equal ratios, the
magnitudes of ∆v⃗∆t and ∆r⃗0 = v⃗0∆t can be related to the
larger triangles:

|∆v⃗∆t|
|v⃗0∆t|

=
|v⃗0∆t|

r

|∆v⃗|∆t

v∆t
=

v∆t

r

which allows:

ar =
|∆v⃗|
∆t

=
v2

r
= ω2r

with a⃗r pointing at all times toward the center. ar decreases
with r when v is fixed, yet it increases with r when ω is
fixed. This is because v = ωr, necessitating a larger veloc-
ity and acceleration to maintain the same angular velocity
at a greater distance.

Centrifugal force is the fictitious force that seems to pull
objects away from the center of motion. In fact, it is a man-
ifestation of inertia, and a demonstration that accelerating
points cannot be used to define inertial reference frames.

When solving circular motion problems, remember forces
like gravity and friction that may not seem relevant at first.
Forces on the r-axis must sum to mar, while those on the
other axes must sum to zero, if the motion is uniform. Be
sure that the elements producing the centripetal force are
actually in the plane of motion.
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1.9 Circular orbits

If a projectile’s velocity is sufficiently large, the Earth’s cur-
vature can no longer be ignored, as the surface will curve
away as the projectile moves horizontally.

For an object in a perfectly circular orbit, the centripetal
acceleration depends on the gravitational force at the or-
bital radius. Because the Earth’s radius is almost 6400 km,
and because low Earth orbits can be as low as 160 km, the
surface value of g can be used as an approximation. Given
orbital speed vo:

ar =
v2
o

r
= g

which necessitates that:

vo =
√
rg

Although vo appears to increase with r, g decreases with
the square of r, so that vo decreases as well.

Since T = 2πr/v, the period of a circular orbit:

To = 2π
√
r/g

A satellite in orbit at 160 km has a speed near 28,800 km/hr
and a period of approximately 88 minutes. Though it accel-
erates continually, the satellite experiences weightlessness,
like any freely-falling object.

1.10 Non-uniform circular motion

An object that is caused by a track or cable to move
through a circular motion in the vertical plane is subject to
the force of gravity, plus a normal or tension force n that
pushes or pulls it toward the center. This normal force
produces the sensation of weight. The motion is circular,
so it is always true that Fr = mv2

t /r. At the bottom, it is
also true that Fr = n− w. n must exceed w if the motion
is to remain circular, so the apparent weight at the bottom
must be greater than w.

At the top of the circle, Fr = n+w. Both n and Fr increase
with v, becoming arbitrarily large as long as the track or
cable does not break. Since w never changes, the minimum
Fr (and therefore the minimum v consistent with circular
motion at the top) is that where n = 0. At this point, the
centripetal acceleration is solely produced by the object’s
weight. This gives mv2/r = w, which yields the critical
speed, the lowest speed at the top that will continue the
circular motion:

vc =
√
rg

Since v = ωr, this can also be expressed as the critical
angular velocity:

ωc =
√
g/r

As long as v ≥ vc at the top, the normal force will be zero
or more, the apparent weight will be zero or more away
from the center, and the motion will remain circular.

For an object in non-uniform circular motion:

a⃗ = a⃗r + a⃗t

Whereas centripetal acceleration changes the object’s di-
rection, tangential acceleration:

at =
dvt
dt

=
dω

dt
r =

d2s

dt2
=

d2θ

dt2
r

changes its speed. If at is constant:

∆vt = at∆t

while the arc displacement:

∆s = vt∆t+
1

2
at(∆t)2

Since ω = vt/r and θ = s/r, dividing by r produces:

∆ω =
at

r
∆t

∆θ = ω∆t+
at

2r
(∆t)2

1.11 Action and reaction

According to Newton’s third law:

Every force on an object is matched by a force af-
fecting another object, with the forces being equal in
magnitude and opposite in direction.

Together, the objects form an action/reaction pair.
Note that these forces always affect different objects. Two
forces affecting the same object do not form a pair, even if
they are equal and opposite; instead, their presence indi-
cates the existence of at least one other interacting object.

Because no action is possible without a complementary re-
action, no interaction can be completely understood with-
out studying all the objects that participate. For conve-
nience, some forces are ignored, such as the gravitational
attraction exerted by a falling object on the Earth. When
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both forces are included in the system, they are called in-
ternal forces. When one force is ignored, the included
force is called an external force, and is said to be part of
the environment. As will be seen, internal forces conserve
system momentum, but external forces do not.

A motive force generated by an internal energy source is
called propulsion. When walking, the foot exerts a static
friction force against the floor that pushes the floor back,
while the floor exerts an opposing friction force that pushes
the walker forward. The force exerted on the foot is the
propulsive force.

Assume an object of mass m is suspended by a massless
cable. If the object has a constant (possibly zero) vertical
velocity, the forces on it are in equilibrium, so the cable ten-
sion must equal the object’s weight, mg. If the object were
accelerating up or down, the net force would be non-zero,
and the tension would be greater or less than the object’s
weight.

If the cable is suspended by a pulley, with the object hang-
ing on one side, and the other end fixed to the floor, the
tension at the both ends will again be mg. On the object
end, this tension is paired with the object’s weight. On the
floor end, it is paired with a tension force produced by the
floor.

If the cable is detached from the floor, and if another ob-
ject of mass m is attached to the free end, the tension on
the cable is still mg, even though the objects have a com-
bined mass of 2m; as before, any tension greater than mg
would cause the objects to rise. Instead, the second object’s
weight has replaced the tension force that was produced by
the floor. The force on the pulley has increased from mg
to 2mg, however.

Note that within the cable, at a given point, tension pulls
equally in both directions, just as a spring pushes outward
in both directions when compressed. A cable pulls in a
single direction only at its ends. When suspended, the ten-
sion in a real cable will be greater near its top, since that
portion bears the object’s weight, plus the weight of the
cable below it.

When diagramming interactions, create a free-body dia-
gram for each object, with forces attached to the objects
upon which they act, rather than those from which they
originate. Then draw a dotted line between each force and
its corresponding counterforce. Every internal force should
be linked to a force on a different object, and the net force
on each object should produce the expected motion for that
object.

2 Momentum

An object’s momentum:

p⃗ ≡ mv⃗

with units kg ·m/s.

This allows force to be defined as the rate of momentum
change, which is how Newton originally presented his sec-
ond law. When m is constant over time:

F⃗ ≡ dp⃗

dt
= m

dv⃗

dt

Since Fx dt = m dvx, and since vx varies from vx:0 to vx:1
as t varies from t0 to t1, summing over these ranges gives:∫ t1

t0

Fx dt = m

∫ vx:1

vx:0

dvx = m
(
vx:1 − vx:0

)
= ∆px

An impulsive force is one that occurs over a short period,
and the sum of a force over time is called an impulse. Be-
cause force is itself a rate of momentum change, this sum
is a quantity of momentum. The impulse-momentum
theorem states this directly:

J⃗ ≡
∫

F⃗ dt = ∆p⃗

J has units N · s, equivalent to kg ·m/s. If m is constant:

∆v⃗ =
J⃗

m

An object in circular motion has angular momentum.
As will be seen, this scalar quantity:

L = mrvt = mr2ω

with r being the object’s distance from the rotation axis.
Unlike translational momentum, L has the unit kg ·m2/s.

2.1 Conservation of momentum

A system is a group of objects that interact with each
other. An isolated system is one that does not allow
matter or energy to enter or exit. Where momentum is
concerned, this is one for which the net external force on
the objects is zero. In particular, isolated systems are not
affected by external gravitational forces. A closed sys-
tem allows energy to enter or exit, but prevents matter
from doing so. An open system allows either.
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If objects A and B interact so that the magnitude of the
force on A is FA, and that on B is FB, and if the forces
occur along the same axis:

dpA

dt
= FA

dpB

dt
= FB

Newton’s third law requires that FA = −FB. Adding these
equations:

dpA

dt
+

dpB

dt
= 0

shows that total momentum is constant in the absence of
an external force. This gives the law of conservation of
momentum:

The total momentum in an isolated system is con-
stant.

All interactions must be examined before a system can be
considered isolated. For example, momentum is not con-
served when a ball bounces off the ground unless the Earth
and its momentum is considered as well.

An object’s velocity constantly changes as it follows a cir-
cular path, so its translational momentum (exclusive of the
system that contains it) is not conserved. However, accord-
ing to the law of conservation of angular momentum:

When the net tangential force is zero, the angular
momentum of an object remains constant

Therefore, if r changes, vt will change to hold L constant.

2.2 Rocket propulsion

If m varies over time, force must be related to momentum
in a more general way:

F =
dp

dt
= m

dv

dt
+ v

dm

dt

A rocket propels itself by expelling reaction mass at a high
velocity. The momentum of the system remains constant
during the flight, while that of the rocket changes to offset
the reaction mass momentum.

If the rocket’s starting mass and velocity are m and v, the
initial momentum of the system as a whole:

p0 = mv

If dm is the rocket’s change in mass as reaction mass is
exhausted, and if ve is the velocity of the exhausted mass

in the v reference frame, then the system momentum after
this incremental acceleration:

p1 = (m+ dm)(v + dv)− dmve

Notice that dm is added once and subtracted once. As
the rocket’s mass increases by negative quantity dm, the
accumulated exhaust mass decreases by the same negative
amount, leaving the mass of the entire system constant.

If v′
e is the velocity of the exhaust along the same axis, but

relative to the rocket:

ve = v′
e + v + dv

with v + dv being the rocket’s velocity after acceleration.
This allows:

p1 = (m+ dm)(v + dv)− dm(v′
e + v + dv)

= m(v + dv)− dmv′
e

The momentum difference:

p1 − p0 = m(v + dv)− dmv′
e −mv

= mdv − dmv′
e

Any change to the system momentum p must be produced
by an external impulse. If there are no external forces (par-
ticularly gravity or drag) then p1 − p0 is zero, and:

dmv′
e = m dv

If u = −v′
e is the positive speed at which reaction mass is

ejected:

−dmu = m dv

If R = −dm/dt is the positive rate at which reaction mass
is consumed, this allows:

−dm

dt
u = m

dv

dt

Ru = ma

This is the first rocket equation. Ru gives the rate of
momentum change, equivalent to force. In this case, the
force is called thrust:

T = Ru

and it is related by the first equation to the rocket’s acceler-
ation, as Newton’s second law requires. If −dmu = m dv
is instead solved for velocity:

dv = −dm

m
u
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the rocket’s acceleration:∫ v1

v0

dv = −u

∫ m1

m0

dm

m

so that:

v1 − v0 = u ln
m0

m1

This is the second rocket equation, which relates accel-
eration to the consumption of reaction mass.

3 Energy

3.1 Gravitational potential energy

Given uniformly accelerated motion along the y-axis:

v2
y:1 = v2

y:0 + 2ay(y1 − y0)

Disregarding drag, for a falling object near the Earth’s sur-
face, acceleration will remain approximately constant at
ay = −g. Therefore:

v2
y:1 + 2gy1 = v2

y:0 + 2gy0

Note that v2
y + 2gy is constant over time. Alternatively,

because F = ma:

Fy = m
dvy
dt

= m
dy

dt

dvy
dy

= mvy
dvy
dy

The ratio dvy/ dy allows kinetic energy (which varies with
vy) to be related to gravitational potential energy (which
varies with y). Because Fy = −mg, the exchange between
kinetic and potential energy at each instant:

mvy dvy = −mg dy

vy varies from vy:0 to vy:1 as y varies from y0 to y1, so
summing over these ranges:∫ vy:1

vy:0

mvy dvy =

∫ y1

y0

−mg dy

produces:

1

2
m(v2

y:1 − v2
y:0) = −mg(y1 − y0)

1

2
mv2

y:1 +mgy1 =
1

2
mv2

y:0 +mgy0

The expression:

K =
1

2
mv2

gives the kinetic energy of the object, measured in
joules:

J ≡ N ·m = kg ·m2/s2

Because it varies with v2, K can never be negative. The
expression:

Ug = mgy

gives the object’s gravitational potential energy, when
g is constant. It is also measured in joules. As shown, the
change in kinetic energy for an object in free fall is matched
by an opposite change in potential energy, and vice-versa.
This can be generalized to all forms of potential energy:

∆K = −∆U

Ug can be negative, depending on where the origin is
placed, but ∆Ug will be the same in all reference frames.
Similarly, K will vary when measured from different refer-
ence frames, but ∆K will not.

The same results are produced for an object sliding on a
frictionless inclined surface. Given axis s parallel to the
surface at the object’s position, the acceleration along s:

Fs = mas = m
dvs
dt

= m
ds

dt

dvs
ds

= mvs
dvs
ds

The object’s weight can be decomposed into two compo-
nents, one perpendicular to the surface that is opposed by
an equivalent normal force, and one parallel. If the s-axis
has angle θ relative to the Earth’s surface, then the parallel
component:

Fs = −w sin θ = −mg sin θ

so that:

mvs dvs = −mg sin θ ds

However, a unit change in s produces a change in y equal
to sin θ, so that sin θ ds = dy. This relates the change in
velocity along s to the change in height, just as before:

mvs dvs = −mg dy

This holds whether the surface is flat or curved. The only
difference is that, as θ decreases, as decreases, so that more
time is needed to convert a given height into kinetic energy.

An object’s mechanical energy:

Em = K + U

with U representing all types of potential energy. Accord-
ing to the law of conservation of mechanical energy:
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In the absence of resistive forces, like friction, me-
chanical energy is constant.

This allows different system states to be related to each
other without understanding the motions that transform
one state to another.

3.2 Restoring forces

A restoring force is one that returns a system to an equi-
librium state. Elastic systems are those that contain
restoring forces.

If the end of a spring has position se along the spring’s
axis when the spring is in equilibrium, its displacement
from equilibrium:

∆s = s− se

Hooke’s law states that the spring’s force along the axis
varies linearly with ∆s:

Fe = −k∆s

The spring constant k has the unit N/m, and is specific to
each spring. This is not a true physical law, but it models
many springs adequately if they are not over-compressed
or over-stretched. In its most general form, the law is writ-
ten without the negative sign, leaving the direction of the
force unstated. Including the sign shows that Fe opposes
the displacement, and is thus a restoring force.

3.3 Elastic potential energy

If an object of mass m is connected to the end of a friction-
less, massless spring, the net force along the spring’s axis
will equal −k(s − se). The force needed to accelerate the
object:

mas = m
dvs
dt

= m
ds

dt

dvs
ds

= mvs
dvs
ds

As before, equating with the restoring force in this system
allows:

mvs dvs = −k(s− se) ds

This could be integrated directly, with v varying from v0
to v1 as s varies from s0 to s1. However, substituting
u = s − se changes the integration limits to the spring
displacements s0 − se and s1 − se. Because se is constant,
du = d(s− se) = ds, so that:∫ v1

v0

mvs dvs =

∫ u1=(∆s)1

u0=(∆s)0

−ku du

1

2
m(v2

1 − v2
0) = −1

2
k
[
(∆s)21 − (∆s)20

]
This shows that the spring’s elastic potential energy:

Ue =
1

2
k(∆s)2

3.4 Elastic collisions

After a perfectly inelastic collision, objects stick to-
gether and share a common velocity. During an elastic
collision, objects are compressed, converting kinetic en-
ergy into elastic potential energy. The normal forces be-
tween the objects increase until they are maximally com-
pressed, then the objects expand, converting some of the
potential energy back to kinetic energy. The normal forces
drop to zero as this happens, and the collision ends. The
collision’s duration depends on the construction of the ob-
jects, but one to ten milliseconds is common. In a per-
fectly elastic collision this process is perfectly efficient,
and all mechanical energy is conserved. Harder materials
produce shorter and more perfectly elastic collisions.

Momentum is conserved during all interactions; this follows
from Newton’s third law, which guarantees that a force pro-
ducing a momentum change on one object is matched by a
force producing an opposite change on some other object.
As a result, an isolated system’s center of mass has a con-
stant velocity, even as its components collide or otherwise
interact. Though momentum is conserved, mechanical en-
ergy is lost if the objects are imperfectly elastic. Because a
difference in kinetic energy represents a difference in veloc-
ity, which in turn suggests a difference in momentum, this
seems to imply that momentum is not conserved. How-
ever, for any two or more objects, there is a range of in-
dividual velocities that combine to produce the same total
momentum, and different points in this range yield differ-
ent amounts of kinetic energy.

In a perfectly elastic collision between objects A and B,
both momentum and mechanical energy will be conserved.
If the objects collide directly, the motion can be limited to
one dimension. If A is in motion when the objects meet,
and B at rest, the total momentum:

mAvA:1 +mBvB:1 = mAvA:0

If there is no resistive force, the total energy:

1

2
mAv

2
A:1 +

1

2
mBv

2
B:1 =

1

2
mAv

2
A:0
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Solving the first equation for vA:1 and substituting into the
second eventually produces:

vB:1

[(
1 +

mB

mA

)
vB:1 − 2vA:0

]
= 0

This yields two solutions. The first, vB:1 = 0, describes the
case where the objects do not meet. In the second:

vB:1 =
2mA

mA +mB

vA:0

Returning this to the momentum equation gives:

vA:1 =
mA −mB

mA +mB

vA:0

This produces five possible outcomes for a perfectly elastic
collision:

� If mA ≪ mB, A bounces backward at most of its orig-
inal speed, and B bounces slowly forward;

� If mA < mB, A bounces backward, and B bounces
forward;

� If mA = mB, A stops, and B bounces forward at A’s
original velocity;

� If mA > mB, A continues forward at a slower rate, and
B bounces ahead at a rate greater than A’s original
speed;

� If mA ≫ mB, A continues forward at nearly its origi-
nal velocity, and B bounces ahead at almost twice that
rate.

The Galilean transformation of velocity allows these results
to be used even when both objects are in motion: simply
chose a new frame with velocity V equal to one of the ve-
locities in the original frame. Within the new frame, each
object has velocity v ′ = v−V . If they have the same mass,
the objects will exchange velocities just as they would if one
were at rest.

If the collision is indirect, some energy will be transferred
to the axis perpendicular to A’s original velocity:

θA

−θBp⃗A:0

p⃗A:1

p⃗B:1

A

B

x

The system’s center of mass will not change in velocity, so
momentum will be conserved along all axes. If the orig-
inal motion follows the x-axis, and if θA and θB are the
counterclockwise angles between that motion and the new
paths:

mAvA:0 = mAvx:A:1 +mBvx:B:1

= mAvA:1 cos θA +mBvB:1 cos θB

while on the y-axis:

0 = mAvy:A:1 +mBvy:B:1

= mAvA:1 sin θA +mBvB:1 sin θB

θA and θB are determined by the geometry of the impact.
As object A strikes B, the normal force accelerates each
in opposite directions. The force is perpendicular to the
surfaces at the point of contact:

p⃗A:0

p⃗A:1

p⃗B:1

Because momentum is conserved along both axes, any
change in px:A or py:A will be matched by an offsetting
change in px:B or py:B, so that the three momentum vectors
combine to form a closed triangle.

If the collision is perfectly elastic, kinetic energy will be
conserved as well, so that:

1

2
mAv

2
A:0 =

1

2
mAv

2
A:1 +

1

2
mBv

2
B:1

If the masses are equal, this allows:

v2
A:0 = v2

A:1 + v2
B:1

Since the masses are equal, the velocity vectors produce
a closed triangle, just like the momentum vectors. If the
collision is perfectly elastic, v⃗A:1 and v⃗B:1 also form a right
angle, thus recalling the Pythagorean theorem.

3.5 Energy diagrams

An energy diagram graphs an object’s energy on the ver-
tical axis against its position on the horizontal. A horizon-
tal line E shows the total energy, a curve U shows the
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potential energy at each position, and the distance E − U
gives the kinetic energy K. Since K > 0 implies motion,
the object has a non-zero velocity wherever U < E, and it
continues to move until U = E. The object cannot reach
any position where U > E, which is consistent with the
fact that K is always non-negative.

For a bouncing object, the horizontal axis gives the vertical
position y, and U = mgy, producing a straight line that
intersects the origin:

E

yA yC

KA

KC

U yB

KB

The bounce is assumed to be instantaneous, so the object
has its maximum kinetic energy when y is zero. As it moves
upward, U increases and K decreases until U and E meet
at the object’s maximum height. The object then falls, and
U is converted to K until y is zero again, where another
bounce occurs. The sequence then repeats.

For an object connected to a spring, the horizontal axis
gives the object’s axial position s, and U = − 1

2
k(s − se)

2,
producing a parabola with its vertex at se, where U is zero.
K cannot be negative, so E must intersect the parabola at
one or two points. If it intersects at the vertex, the sys-
tem contains no energy, and no motion will result. As E
increases, the intersections show the points at which the
spring is most compressed and most stretched, and the ob-
ject oscillates between them:

E

smin smax

U

se

Ke

As will be seen, negating the slope of U gives the magni-
tude of the net conservative force acting on the object, so if
the slope is zero when U = E (so that K is zero) the object

will stop. Otherwise, it will turn and resume its motion in
the opposite direction.

Local minima and maxima in U are equilibrium positions
where it is possible for the object to rest. Maxima are un-
stable equilibria, since even small increases in E produce
motion that will move the object into regions where con-
servative forces reinforce that motion. Minima are stable
equilibria, since small increases will move the object into
regions that oppose the motion, leaving the object to os-
cillate between nearby points. Geometrically, the result is
determined by the sign of mF, the slope of the conservative
force function, at the equilibrium position:

EU

U

ES

sS sU

Fc = −dU
ds

0

mF = −d2U
ds2

0

At unstable equilibra, the sign is positive, so that forward
motion produces a positive force, and backwards motion
produces a negative force. At stable equilibria, the sign is
negative, so that the force is reversed relative to the motion.
Regions where U is flat are known as neutral equilibria.
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4 Work

An object’s thermal energy Et is the total kinetic energy
of the molecules within it, along with the potential energy
represented by stretched or compressed molecular bonds.
The system energy of one or more objects is the sum of
their mechanical and thermal energy:

Es ≡ Em + Et

= K + U + Et

The conversion of one energy type to another is called en-
ergy transformation. The exchange of energy between
a system and its environment is called energy transfer.

The mechanical transfer of energy to or from a system
is called work; as will be seen, this is produced by the
application of a force over a displacement. When energy
is transferred due to a temperature difference, it is called
heat. Both work and heat are measured in joules. In the
absence of heat, the work performed on a system:

W = ∆Es

= ∆Em +∆Et

= ∆K +∆U +∆Et

A given process might transfer energy between K, U , and
Et. If it also increases their sum, then W is positive, and
energy has been transferred into the system. If their sum
decreases, W is negative, and energy has been transferred
out of the system.

4.1 Kinetic energy and work

If a force acts upon a system along axis s:

Fs = mas = m
ds

dt

dvs
ds

= mvs
dvs
ds

so that:

Fs ds = mvs dvs

Summing over the displacement from s0 to s1:∫ s1

s0

Fs ds =
1

2
mv2

s

∣∣∣vs:1
vs:0

As shown earlier, summing force over time gives the change
in momentum. Now it is seen that work, which sums force
over a displacement, gives the change in kinetic energy :

J ≡
∫ t1

t0

Fs dt = ∆p W ≡
∫ s1

s0

Fs ds = ∆K

The equation of work with ∆K is called the work-energy
theorem.

Because mv = p, kinetic energy can be expressed in terms
of momentum:

K =
p2

2m

Work is performed only by force components that are par-
allel to the displacement, so the work performed by a con-
stant force F⃗ over displacement ∆r⃗ is given by the dot
product:

W = F⃗ ·∆r⃗

A force that coincides with the direction of motion per-
forms positive work that increases K, while a force that
opposes it performs negative work that decreases K. This
is consistent with the idea that positive work transfers en-
ergy into the system, while negative work transfers it out.

4.2 Potential energy and work

A conservative force performs the same amount of work
over a given displacement, regardless of the shape or length
of the path that produces that displacement. Resistive
forces are not conservative, as longer paths inevitably pro-
duce larger amounts of work. Some form of potential
energy can be associated with any conservative force, so
that the work performed by the force, as the object moves
through its field:

Wc = −∆U

The sign is negative because the potential energy associ-
ated with the force decreases when the displacement co-
incides with the direction of the force. This accords with
the finding that, for an object in free fall, ∆K = −∆U . A
single point always represents the same amount of poten-
tial energy within a given reference frame. In this sense,
conservative forces conserve mechanical energy. Because
nonconservative forces allow different amounts of work to
be performed while reaching such a point, it is impossible
to associate a fixed amount of energy with that point.

Because Wc = Fc∆s, it must be the case that:

Fc = −∆U

∆s

Therefore, the instantaneous conservative force:

Fc = lim
∆s→0

−∆U

∆s
= −dU

ds
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This is the negative of the slope of the U curve in an energy
diagram.

If Wn gives the work of nonconservative forces, then the
total work on the object:

W = Wc +Wn

Because mechanical energy is conserved by Wc, any change
in Em must be produced by Wn:

Wn = ∆Em = ∆K +∆U

4.3 Thermal energy and work

Resistive forces are also known as dissipative forces. These
are nonconservative, and because they always oppose the
direction of motion, they perform negative work that re-
moves Em from the system. Since they do not contribute
to U , the work done by dissipative forces:

Wd = ∆K

with ∆K being zero or negative. The kinetic energy lost
this way is converted to thermal energy. If the system is
not heated or cooled from the outside:

∆Et = −Wd

Dissipative forces can only increase Et. Since friction and
drag affect both the object in motion and the surface or
fluid that resists that motion, both object and surround-
ing medium must be examined when calculating ∆Et

4.4 Conservation of energy

External forces can be conservative or nonconservative. Be-
cause of Newton’s third law, nonconservative forces that
are not dissipative are necessarily external, however. If We

is the work performed by nonconservative external forces:

Wn = Wd +We

so that:

W = Wc +Wd +We

∆K = −∆U −∆Et +We

and:

We = ∆K +∆U +∆Et

Isolated systems do not transfer thermal energy. According
to the law of conservation of energy:

The energy of an isolated system is constant when
We is zero.

As a result:

∆K +∆U +∆Et = 0

∆Em +∆Et = 0

∆Es = 0

To solve work problems, it is necessary to understand which
forces perform work over a given displacement, whether the
work of each force is positive or negative, and which type
of energy transfer is represented by the work. In general:

K0 + U0 + Et:0 +We = K1 + U1 + Et:1

with every form of work representing a transfer between
two terms on the left. An equation that relates the total
energy at one point to that at another is called an energy
equation.

4.5 Power

Power is the rate at which energy is transferred or trans-
formed:

P ≡ dW

dt

Power is measured in watts, with W = J/s. This abbre-
viation should not be confused with W , which represents
work. Given constant force F⃗ and position r⃗:

dW = F⃗ · dr⃗

Dividing by dt gives:

dW

dt
= F⃗ · dr⃗

dt
= F⃗ · v⃗

If the angle between F⃗ and v⃗ is θ, the power:

P = F⃗ · v⃗ = Fv cos θ

In particular, when v⃗ is constant and directly opposed by a
conservative force like gravity, F⃗ · v⃗ gives the rate at which
potential energy is created. This follows from the fact that
K does not change, while v is the rate of displacement
within the field that creates the potential energy.
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5 Newton’s theory of gravity

According to Kepler’s first law:

Planets traverse elliptical orbits with their sun at
one of the foci.

According to his second law:

A line drawn between the sun and an orbiting planet
covers equal areas over equal time intervals.

According to his third law:

For a given planetary system, the square of each
planet’s orbital period varies linearly with the cube
of half the orbit’s major axis.

Newton’s law of gravity states that, for particles of mass
mA and mB, separated by distance r, the magnitude of the
gravitational force affecting each of them:

Fg = G
mAmB

r2

with the gravitational constant:

G ≈ 6.67× 10−11 Nm2/kg2

This can be extended to include spherical objects, or those
shaped as spherical shells, in which case r gives the dis-
tance between the centers. However, for a particle inside
a spherical shell, no net gravitational force is produced.
Therefore, descending below the surface decreases the net
gravitational force, as the ‘shell’ above contributes nothing
to the sum.

As already seen, an object’s inertial mass is defined relative
to the acceleration produced by an arbitrary force:

m =
F

a

The principle of equivalence equates this value with
the object’s gravitational mass, defined relative to the
gravitational force produced by another object of mass M .
Following from Newton’s law:

m =
r2

GM
Fg

Since Fg = mg, the acceleration due to gravity:

g =
GM

r2

As calculated, this produces a value of 9.83m/s2, rather
than the standard 9.81m/s2 for g at sea level. The Earth

rotates, so a centripetal force is required to maintain an ob-
ject’s position on the surface. Gravity produces this force,
plus an additional amount that is opposed by a normal
force, produced by the Earth’s surface. The scale mea-
sures the normal force, not the gravitational force, so the
centripetal force is missing. As a result, the scale correctly
measures g at 9.83m/s2 near the poles, while incorrectly
measuring 9.78m/s2 near the equator (though this value is
also affected by the height of the Earth’s equatorial bulge,
which increases r).

5.1 Gravitational potential energy

∆U has been equated with the negative work performed by
a conservative force, but this provides no absolute measure
of potential energy. For that, it is necessary to define a zero
point for U . In simple gravitation problems, U is defined
to be zero where y = 0, at the planet’s surface, but that is
valid only for small values of y, where gravity is relatively
constant.

If two objects were infinitely distant, the gravitational at-
traction between them would be zero. ∆U = −Wc, so if
the objects are moved from center distance r to this infinite
distance, the increase in potential energy:

∆Ug = −
∫ ∞

r

Fc dy

Each gravitational force is directed toward the center of
the opposing object, so Fc = −GmAmB/y

2 and:

∆Ug = −
∫ ∞

r

−G
mAmB

y2
dy

= −G
mAmB

y

∣∣∣∞
r

= G
mAmB

r

This allows potential energy values to be defined relative
to this infinite separation, where Ug reaches its maximum
value. If the maximum is given a value of zero in abso-
lute terms, the absolute potential energy at any distance
r will be the difference between the potential energy at r
and that at zero:

Ug = −G
mAmB

r

This value can be negative because only changes in Ug are
significant. The value can be used in energy equations just
as Ug = mgy is, and it remains accurate at any distance.
Ug is properly the potential energy of the system, not that
of a single object. If one object is much less massive, this
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distinction can be ignored, as the energy change will be a
fraction of the more massive object’s total.

In a system with more than two objects, the gravitational
potential energy is the sum of the energies between each
pair in the whole. For a system with three objects, A, B,
and C, the total:

Ug = −G
(mAmB

rAB

+
mAmC

rAC

+
mBmC

rBC

)
Over time, gravity performs work that changes K. An ob-
ject’s escape speed is the minimum starting speed neces-
sary to prevent the object from returning to an attractive
body. To ensure this, the object’s speed must be zero or
greater after potential energy has been maximized. This
requires that the starting kinetic energy equal or exceed
the difference between the starting potential energy and
the maximum. For an object to escape the surface of a
non-rotating body of mass M and radius R, when there is
no drag, its speed must equal or exceed:

ve =

√
2GM

R

5.2 Satellite orbits

ar equals v2/r during uniform circular motion. If a satel-
lite with mass m follows a circular orbit around a planet of
mass M , at distance r from the planet’s center, it must be
the case that:

GMm

r2
= mar =

mv2

r

Therefore, the satellite’s speed:

v =

√
GM

r

is independent of its mass. The orbital period:

T =
2πr

v

Setting T to the planet’s rotational period produces a
geosynchronous orbit.

Substituting the result for v produces:

T 2 =
4π2

GM
r3

which is Kepler’s third law, fit to a circular orbit.

The t-axis is tangent to a circle in the rtz coordinate sys-
tem, so a tangential component is not necessarily tangent

to a non-circular path. The angular momentum of an ob-
ject in circular motion L = mrvt, and this value is constant
as long as the net tangential force is zero. If a satellite fol-
lows an elliptical orbit with instantaneous velocity v⃗, and
if the angle between v⃗ and the r-axis is β:

β

v⃗t

v⃗

then the magnitude of the tangential velocity vt = v sinβ.
Therefore:

L = mrv sinβ

Because the gravitational force follows the r-axis, which is
always perpendicular to the t-axis, and because no other
force affects the object, the angular momentum remains
constant, even as v⃗ changes direction and magnitude.

The satellite experiences displacement ∆s⃗ = v⃗avg∆t during
interval ∆t. Joining the end points of ∆s⃗ with the focus
of the orbit produces a triangle. Because the angle be-
tween ∆s⃗ and the second side is β, the triangle’s height is
vavg∆t sinβ:

β

r

∆s

Bisecting a triangle this way produces two right triangles
of the same height, with adjacent sides that sum to r. The
total area:

∆A =
1

2
rvavg∆t sinβ

As ∆t approaches zero, v⃗avg approaches the instantaneous
velocity v⃗. rv sinβ = L/m, so the rate at which the area
is covered:

lim
∆t→0

∆A

∆t
=

1

2
rv sinβ =

L

2m

Because L is constant, this rate is also constant, thus af-
firming Kepler’s second law.
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5.3 Orbital energy

For a satellite in a circular orbit, v =
√
GM/r. Its kinetic

energy:

K =
1

2
mv2 =

GMm

2r

Because Ug = −GMm/r, it is seen that:

K = −1

2
Ug

K decreases with Ug, and Ug increases with r, so K de-
creases with r, as expected.

If K is changed in a way that violates this ratio, the satel-
lite will leave its circular orbit. If the satellite moves from
one circular orbit to another, the change in energies can be
related with:

∆Ug = −2∆K

Although K decreases as r increases, Ug increases by twice
the energy that is lost. In a given orbit, the satellite’s total
mechanical energy:

Em = K + Ug =
1

2
Ug = −G

mAmB

2r

The same result holds for elliptical orbits if r is replaced
with the length of the semi-major axis, which stretches
from the center of the ellipse to either of its widest points.

The zero energy point was associated with the distance
at which the attractive force reaches zero. Because Em is
negative, this is seen to be a bound system, which ties
a satellite to another body. For the satellite to escape, it
would need enough kinetic energy to reach the zero point,
and this would require that K ≥ −Ug. ∆Em gives the en-
ergy change necessary to transfer from one orbital radius
to another.

5.4 Gravitational fields

Although it is common to treat gravitation as a force, it
is more correct to say that one object’s mass produces a
spacetime distortion that changes the trajectory of other
objects as if they were affected by a force. This distortion
is called the gravitational field.

Fields are represented by vector fields that give directions
and magnitudes at points in space. If a gravitational field
is created by one object, and if another object enters that

field, multiplying the mass of the second object by the field
strength at the object’s position gives the force affecting it.

Given objects of mass M and m, the magnitude of the
gravitational force F = GMm/r2, so the magnitude of the
field produced by M is g = GM/r2. The spherical unit
vector r̂ points away from the origin, so placing M at the
origin allows the field to be expressed as:

g⃗ = −G
M

r2
r̂

The magnitude or strength of each gravitational field vector
is measured in N/kg, equivalent to m/s2.

6 Rotation of rigid bodies

Angular acceleration:

α ≡ dω

dt

Because at = dvt/dt and vt = rω, tangential acceleration,
for constant r:

at = r
dω

dt

Therefore, just as vt = rω:

at = rα

The kinematic equations for translational motion are
straightforwardly adapted to rotational motion:

ω1 = ω0 + α∆t

θ1 = θ0 + ω0∆t+
1

2
α(∆t)2

ω2
1 = ω2

0 + 2α∆θ

Different points on a rotating body will have different tan-
gential speeds and accelerations if they vary in distance
from the axis, but they will always have the same angular
velocity and angular acceleration.

6.1 Center of mass

When not constrained by an axle or pivot, the particles
in some object will rotate about the center of mass. If
the object has mass M , and if the particles have mass mi
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and position si, the center of mass along axis s is the
position-weighted average of the particle masses:

sc =
1

M

∑
i

misi

This is seen from the fact that, if particle i is to rotate
around the center, it must be subject to a centripetal force
directed toward the center:

Tr:i = miar:i = miriω
2

If the center’s angular position relative to the particle is θi:

ri

T⃗r:i

θi

si sc

T⃗s:i

s

then the s component of the particle’s centripetal force:

Ts:i = Tr:i cos θi = miriω
2 cos θi

Angle θi also relates the center’s particle-relative s-axis po-
sition to its straight-line distance from the particle:

cos θi =
sc − si

ri

so that:∑
i

Ts:i =
∑
i

miriω
2
(sc − si

ri

)
= ω2

(∑
i

misc −
∑
i

misi

)
= ω2

(
Msc −

∑
i

misi

)
The particle forms an action/reaction pair with the cen-
ter, so the center is affected by an equal force that pulls it
toward the particle. If the center is to maintain its posi-
tion, it must also be subject to a force directed away from
the particle, so that the tension forces affecting the center
along any axis sum to zero:∑

i

Ts:i = 0

Equating the previous result with zero and solving for sc
produces 1

M

∑
i
misi.

More generally:

sc =
1

M

∫
s dm

It is necessary to provide ranges for the integration, so dm
must be replaced with an expression of ds that relates the
change in total mass over some interval to the change in
position.

6.2 Torque

If an object pivots on a fixed point, the radial line is that
which connects the pivot with the point at which some force
acts. If force F⃗ is applied such that the counterclockwise
angle between the radial line and F⃗ is ϕ, then the force’s
tangential component Ft = F sinϕ:

r

d

F⃗
F⃗t

ϕ

π − ϕ

If the distance between the pivot and the point of applica-
tion is r, the torque produced by this force:

τ ≡ rFt = rF sinϕ

Torque is measured in newton-meters, Nm. Though
newton-meters are equivalent to joules, torque is not en-
ergy, and joules should not be used to measure torque.

The line containing F⃗ is called the line of action. Torque
increases linearly with r, and is greatest when the line of
action is perpendicular to the radial line. When the line of
action is parallel, sinϕ is zero, and the force pulls or pushes
the object without producing torque.

The distance between the pivot and the line of action is
called the moment arm or lever arm d. The segment
defining the moment arm is always perpendicular to the
line of action. When ϕ is not a multiple of π/2, the mo-
ment arm combines with the radial arm and the line of ac-
tion to produce a right triangle with hypotenuse of length
r, and angle π − ϕ at the point of application. Because
sin(π − α) = sinα:

d = r sinϕ
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The moment arm is a distance, not a displacement, so it is
always positive. Therefore:

|τ | = dF

When forces are applied at multiple points, the object’s
response is determined by the net torque:

τ =
∑
i

τi

If an object with an axle is suspended from that axle, the
net torque produced by gravity is the sum of the torque
values associated with the particles in the object. For par-
ticle i, |τi| = dimig. Because the gravitational force is
perpendicular to the x-axis, and because the moment arm
is perpendicular to the line of action, placing the axle at
the origin allows di = |xi|. Particles to the left of the axle
produce positive values of ϕ and sinϕ, while particles to
the right produce negative values. Therefore:

τi = −ximig

Summing these values gives:

τg = −g
∑
i

mixi = −gM · 1

M

∑
i

mixi

= −gMxc

where xc is the position of the center of mass relative to
the rotation axis. This allows the gravitational torque to
be calculated as if the object’s mass were entirely concen-
trated at its center of mass. The object experiences no
torque if the axle coincides with the center of mass, or if it
is directly above or below it.

Two equal but opposite forces applied to different points
on an object are known as a couple. Such forces form par-
allel lines of action. If the distance between these lines is
l, then the total torque:

|τ | = lF

This is true regardess of the pivot’s position relative to the
lines. If the pivot is between the lines, and if moment arms
d0 and d1 give the perpendicular distances from the lines to
the pivot, then the torques will act in the same direction.
Because d0 and d1 sum to l:

d0F + d1F = lF

Normally, moving the pivot would change τ , but any move-
ment between the lines lengthens one moment arm by the
same amount that the other is shortened, so every choice
produces the same torque. If the pivot is moved outside
the lines, the torque from one force will oppose the other.

In this case, the difference between d0 and d1 is l, and the
magnitude of the net torque equals lF , as before.

Note however, that if the forces are constant in direction,
the lines of action will change as the couple rotates. As the
distance between them changes, so will the torque.

6.3 Rotational dynamics

Given a particle of mass m traveling a circular path, a tan-
gential force:

Ft = mat = mrα

produces tangential acceleration at and angular accelera-
tion α. Because it is perpendicular to the radial line, the
same force generates torque:

τ = rFt = mrat = mr2α

r appears twice in mr2α, first to equate the particle’s an-
gular displacement with its movement through the circle,
and again to represent the mechanical advantage produced
by the moment arm.

All the particles in an object experience the same angu-
lar acceleration α, so if τ is the net torque on an object
containing particles of mass mi and radius ri:

τ = α
∑
i

mir
2
i

Just as an object’s inertial mass represents its inherent re-
sistance to linear acceleration, its moment of inertia:

I =
∑
i

mir
2
i

gives its resistance to angular acceleration, in units kg ·m2.
By extension:

α =
τ

I

Different pivots produce different moments of inertia, just
as they produce different amounts of torque for a given
tangential force.

More generally, for distance r from the rotation axis:

I =

∫
r2 dm

As before, dm must be replaced with an expression of dr
that relates changes in total mass to changes in position.
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If a one-dimensional object is rotated about some pivot,
the moment of inertia can be determined by placing the
x-axis origin at the pivot and integrating. However, if the
origin of the x′-axis is placed at the center of mass instead,
and if that point is distance d from the pivot, then the x-
axis coordinate for a particular point is related to the x′

coordinate for that point by x = x′ + d. Therefore:

I =

∫
x2 dm

=

∫
(x′ + d)2 dm

=

∫
(x′)2 dm+ 2d

∫
x′ dm+ d2

∫
dm

The first of these terms is the moment of inertia about the
center of mass, if the rotation axis is parallel to the axis
running through the pivot; if the axes are not parallel, the
x-axis will be foreshortened relative to the x′-axis, and dif-
ferent moments will result. The second term is 2dM times
the x′-axis position of the center of mass, and because the
center was placed at the origin of that axis, the product is
zero. The third term is d2 times the sum of the mass M .
Therefore, if I is the moment of inertia about the pivot, if
Ic is the moment of inertia about a parallel axis through
the center of mass, and if d is the distance between these
axes, then I can be determined using the parallel-axis
theorem:

I = Ic +Md2

Similar arguments extend the theorem to objects with more
dimensions. Because Md2 cannot be less than zero, I is
minimized when an object is rotated about its center of
mass.

An object is in translational equilibrium if the net force
on it is zero, giving its center of mass a constant and possi-
bly zero velocity. An object is in rotational equilibrium
if the net torque about every point in the object is zero,
giving it a constant and possibly zero angular velocity. An
object is in total equilibrium if net force and net torque
are both zero.

Problems concerning an object in both translational and
rotational equilibrium can be solved by identifying the
forces that affect the object, expressing these forces in
terms of their x, y, and z components, and then combining
the relevant components into an expression showing the net
torque about some pivot. Because the object is in equilib-
rium, the net forces and the torque can be equated with
zero. The resulting system of equations can then be solved.

6.4 Rotational energy

Each particle in a rotating object has kinetic energy:

Ki =
1

2
miv

2
t:i =

1

2
mir

2
iω

2

Summing these gives the object’s rotational kinetic en-
ergy:

Kr =
1

2

(∑
i

mir
2
i

)
ω2 =

1

2
Iω2

The moment of inertia is again seen to play the role that
inertial mass plays in translational motion.

If an object is not rotating about its center of mass, its
gravitational potential energy could change as it rotates.
In the absence of dissipative forces, however, the total me-
chanical energy:

Em = Kr + Ug

will be conserved. This allows motions that convert one
type of energy to another to be understood without ana-
lyzing the forces that produce the motion.

6.5 Rolling motion

Wheels produce both rolling friction, where they touch the
road, and kinetic friction, where they meet bearings. Al-
though sleds produce only kinetic friction, wheels are more
efficient than sleds. First, their bearings can be lubricated
more effectively than the rails of a sled. Second, the radial
distance from the outside of the wheel to the outside of
the bearing grants a mechanical advantage that helps the
wheel overcome kinetic friction. Assume that force F is
required to pull a wheeled vehicle at a steady velocity. Be-
cause the vehicle is not accelerating, F must be opposed by
an equal force that is produced by rolling and kinetic fric-
tion. This force acts between the wheel and the road, and
it opposes the direction of the vehicle, causing the wheel to
rotate forward. At the outside of the wheel, the rotation
is opposed by rolling friction fr, while at the bearing, it is
opposed by kinetic friction fk. Because the wheel is not
accelerating, the net torque must be zero. If R is the out-
side wheel radius, and Rb the radius at the bearing, this
requires that:

Rbfk +Rfr −RF = 0

Therefore:

F =
Rb

R
fk + fr
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The larger the wheel, the less force is required to overcome
the friction at the bearing.

In one revolution, a wheel moves its center forward by one
circumference, so that ∆sc = 2πR. If vc is the wheel’s ve-
locity, and if T is the time to complete one rotation, then
it is also true that ∆sc = vcT . This produces the rolling
constraint, which relates the wheel’s translational veloc-
ity to its tangential velocity:

vc =
2π

T
R = ωR

Because its tangential velocity exactly opposes the wheel’s
translational velocity, the point P at the bottom of a wheel
is instantaneously at rest if the wheel does not slip. Con-
versely, because its tangential velocity matches the wheel’s
translational velocity in magnitude and direction, the point
at the top of the wheel has velocity 2ωR. The velocity of
points between these two varies linearly with each point’s
distance from P , and this point can be seen as an instan-
taneous pivot for the wheel as a whole.

The wheel’s total kinetic energy includes both rotational
and translational components. The center of mass exhibits
translational motion, so if the rotational energy were calcu-
lated relative to the center, it would be necessary to include
translational kinetic energy when finding K. P is motion-
less, however. For the instant that P serves as a pivot, the
wheel moves around it, and if it continued to do so, the
wheel’s translational motion would end.

Therefore, assuming IP is the moment of inertia about P ,
the total kinetic energy:

K =
1

2
IPω

2

If the wheel’s center of mass is at its center, then by the
parallel-axis theorem, IP = Ic +MR2. This produces:

K =
1

2
Icω

2 +
1

2
MR2ω2

Because vc = ωR:

K =
1

2
Icω

2 +
1

2
Mv2

c = Kr +Kc

with Kc being the translational kinetic energy of the cen-
ter of mass. From this it is seen that wheels with greater
moments of inertia require greater amounts of energy to
achieve a given speed. By extension, spheres, filled cylin-
ders, and hollow cylinders of the same mass roll at differ-
ent rates down an inclined plane, since the plane provides
the same amount of potential energy for a given mass and
displacement. A rotating object produces a higher angular

velocity for a given amount of energy when more of its mass
is concentrated near its center, so a sphere rolls faster than
a filled cylinder, which in turn rolls faster than a hollow
cylinder.

6.6 Angular momentum

When rotation occurs about a fixed axis, quantities like
angular velocity, angular acceleration, and torque can be
treated as scalars; for more general problems, these must
be represented with vectors. If r⃗ is the displacement from
the axis to the point of application, the torque vector:

τ⃗ ≡ r⃗ × F⃗

Positive values – which produce counterclockwise acceler-
ation – are represented by vectors that point toward the
viewer:

r⃗

F⃗

τ⃗

θ

x

y

z

τ⃗ has a direction and a magnitude, but it does not have a
specific position. Any acceleration will occur relative to a
pivot or the center of mass.

During circular motion, v⃗ and p⃗ are always perpendicular
to r⃗, so that angular momentum L = rp. This can be gen-
eralized to include non-circular motion, where p⃗ and r⃗ are
not orthogonal:

L⃗ ≡ r⃗ × p⃗

For an object containing particles that each have angular
momentum L⃗i:

L⃗ =
∑
i

L⃗i

Euler’s rotation theorem guarantees that, given two axes
that meet at a fixed point within the object, any combined
angular displacement can be reproduced as a single rota-
tion about a third axis that crosses the same point. There-
fore, though an object might rotate about more than one
axis over time, that motion follows a single (possibly mov-
ing) axis at a given instant. Each particle has one transla-
tional momentum at this instant, so its angular momentum
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– and the sum of all angular momenta in the object – must
be a single vector as well. However, an angular momen-
tum vector that represents a complex rotation of this type
could also represent a simple rotation around a single axis,
so an object’s angular momentum does not uniquely define
its rotation.

For a constant mass, the rate at which L⃗ changes over time:

dL⃗

dt
=

d

dt
(r⃗ × p⃗) =

(dr⃗
dt

× p⃗
)
+
(
r⃗ × dp⃗

dt

)
= (v⃗ × p⃗) + (r⃗ × F⃗ )

Because v⃗ and p⃗ have the same direction, their cross prod-
uct is zero. Therefore, just as dp⃗/dt = F⃗ :

dL⃗

dt
= r⃗ × F⃗ = τ⃗

The net torque affecting some object may be produced by
both external and internal forces. Every internal force is
part of an action/reaction pair, however, so their torque
contribution sums to zero. This yields the law of conser-
vation of angular momentum:

The direction and magnitude of L⃗ are conserved
within an isolated system.

While it is always true that L = Iω, L⃗ is not guaranteed to
point in the same direction as ω⃗ unless the object is rotated
about an axis of symmetry. When this is done:

L⃗ = Iω⃗

Because angular momentum has a direction, it is difficult to
reorient the axis of a spinning object such as a gyroscope;
to do so, it is necessary to change the momentum of almost
every particle in the object. As the tangential velocity of
each particle grows, the momentum change necessary to
turn the axis to a given angle increases:

p⃗

∆p⃗

6.7 Precession

If a spinning top is not perpendicular to the floor, the top’s
axis will circle the perpendicular axis in the same direction
that the top is spinning. This motion is called precession.

The direction of this motion is most easily understood by
imagining a spinning wheel that faces the observer. If the
wheel turns counterclockwise when viewed this way, par-
ticles near the left and right edges will have translational
momenta that point down and up in the plane of the wheel.
If the wheel is subjected to an upward-pointing torque that
rotates the left edge toward the observer, particles near the
left and right edges will be displaced in space, but their
momenta will not change in magnitude or direction. Mo-
menta near the top will be changed, however. These left-
pointing vectors will be made to point somewhat toward
the observer, while right-pointing vectors near the bottom
will be made to point away. In order to conserve more of
their original momentum, particles near the top will pitch
away from the observer, while those near the bottom will
pitch toward, rotating the wheel along a third axis that
is orthogonal to both the spin axis and the torque. The
pitched momentum vectors will be closer to their original
directions than the un-pitched vectors would have been.

The top behaves in a similar manner. Gravity pulls it away
from the perpendicular axis, so that translational momenta
on the leading edge are turned upward, while those on the
trailing edge are turned toward the floor. To maintain more
of their original momenta, particles on the leading edge dip
in the direction of the procession, while those on the trail-
ing edge rise, causing the top as a whole to lean in the
direction of the torque produced by the gravitational force.

To understand this in more detail, assume the top starts
with angular momentum L⃗, which aligns with the spin axis
at angle ϕ from the perpendicular. If the start of L⃗ is placed
at the pivot, its end will trace a circle of radius L sinϕ that
is centered on the perpendicular axis:

L sinϕ

L⃗

ϕ

dL⃗

τ⃗

If the top has mass m, and if its center of gravity has
displacement r⃗ relative to the pivot, gravitational force
Fg = mg will produce torque τ = rmg sinϕ. This torque
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is orthogonal to r⃗ and F⃗g, so it is tangent to the circle. By
itself, the torque would rotate the top along its own axis,
pulling it away from the perpendicular axis, but when com-
bined with L⃗, it produces a lateral motion that follows the
torque vector. Because τ⃗ = dL⃗/dt, the top’s angular mo-
mentum changes by:

dL = rmg sinϕ dt

causing the end to traverse a small arc on the circle. The
circle’s radius is L sinϕ, while the arc length is dL, so the
angle of this arc:

dθ =
dL

L sin θ
=

rmg dt

L

Therefore, the angular velocity of the precession:

ωp =
dθ

dt
=

rmg

L
=

rmg

Iω

τ⃗ is always perpendicular to L⃗ and tangent to the circle,
so the motion continues, with ωp increasing over time as
friction diminishes L. Just as a satellite constantly ‘falls’
toward the body it orbits, the top constantly rotates to-
ward the floor, but it does so in a way that maintains the
overall structure of the system.

7 Oscillation

A periodic motion around an equilibrium position is called
oscillatory motion. Objects that produce such motion
are oscillators. Whereas the period T gives the time to
complete one cycle, the reciprocal of this value gives the
number of cycles completed in one unit of time. This is
known as the frequency:

f =
1

T

Just as an object’s angular velocity tells its rate of rotation
in radians per second, an oscillator’s angular frequency
gives the rate at which it cycles, also in radians per second:

ω =
2π

T
= 2πf

7.1 Simple harmonic motion

If an object in uniform circular motion has angular posi-
tion ϕ relative to axis s, and if the motion has radius A
and is centered on the origin of axis s, the s-axis position:

s = A cosϕ

The motion along this axis is an example of simple har-
monic motion, which produces a sinusoid when graphed
against time. If the phase constant ϕ0 is the angular
position when t is zero, then the motion’s phase:

ϕ = ωt+ ϕ0

tells the progress of the motion within the current cycle:

s

A

s

ωt+ϕ0

Therefore, the position at time t:

s = A cos(ωt+ ϕ0)

On the circle, the object has tangential velocity vt = ωA.
Projecting this onto the s-axis gives the velocity of the har-
monic motion:

s
v

ωA

v⃗t

which is confirmed by calculating the derivative of the dis-
placement:

v =
ds

dt
= −ωA sin(ωt+ ϕ0)

Because sine can produce no value greater than one, the
maximum speed:

|v|max = ωA



7 OSCILLATION 26

The rate of change for any sinusoid is another sinusoid with
the same frequency, shifted left in the graph by one quarter-
cycle. In this case, when the displacement reaches its great-
est magnitude, the acceleration does the same, while the
speed is momentarily zero. When the displacement is zero,
the acceleration is also zero, but the speed has its maximum
value.

The acceleration necessary to maintain circular motion
ar = ω2A:

s

ω2A

a

a⃗r

which also matches the result obtained by differentiation:

a =
dv

dt
= −ω2A cos(ωt+ ϕ0)

Because s = A cos(ωt+ ϕ0), the acceleration is seen to vary
linearly with the position:

a = −ω2s

The equilibrium position se is zero, so this is consistent with
Hooke’s law, which states that F = −k∆s for spring con-
stant k and ∆s = s−se. The negative relationship between
acceleration and displacement shows that a restoring force
is at work. Working back from this point, it is seen that
simple harmonic motion can be produced by any restoring
force that varies linearly with displacement.

Equating F = ma with Hooke’s law gives:

a = − k

m
s

which produces:

ω =

√
k

m
f =

1

2π

√
k

m
T = 2π

√
m

k

From this it is seen that the frequency and period of the
motion are independent of its amplitude.

Expressing the acceleration as a differential equation gives
the equation of motion for simple harmonic motion:

d2s

dt2
= − k

m
s

7.2 Energy of simple harmonic motion

As demonstrated, an object connected to an ideal spring
produces simple harmonic motion after being displaced
from the equilibrium position. If this position is placed
at the origin, then the elastic potential energy:

U =
1

2
ks2 =

1

2
kA2 cos2(ωt+ ϕ0)

Because v = −ωA sin(ωt+ ϕ0) and ω =
√

k/m, the ob-
ject’s kinetic energy:

K =
1

2
mv2 =

1

2
kA2 sin2(ωt+ ϕ0)

Therefore, its mechanical energy:

E = K + U

=
1

2
mv2 +

1

2
ks2

=
1

2
kA2 sin2(ωt+ ϕ0) +

1

2
kA2 cos2(ωt+ ϕ0)

m and k play identical roles in their respective terms. The
object’s mass allows it to store kinetic energy, while the
spring’s elasticity allows it to store potential energy. All
harmonic phenomena are produced by cyclical exchanges
between two such energy forms, and similar terms will be
found in every example of this behavior.

The energy diagram for this system contains a parabolic
U curve with its vertex at the origin, where the energy is
entirely kinetic. If −A or A is the initial displacement, the
parabola intersects E at both these points, and the energy
is entirely potential at each of them:

E

−A A

Ue

0

K

Because sin2 α+ cos2 α = 1:

E =
1

2
kA2
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This is also seen by calculating E at displacement −A or A,
where there is no kinetic energy. After equating the maxi-
mum kinetic energy with the maximum potential energy:

1

2
mv2

max =
1

2
kA2

solving for vmax gives:

|vmax| =
√

k

m
|A| = ω|A|

which matches the earlier result for maximum speed.

Because:

mv2 + ks2 = kA2

it is possible to solve for different variables. For instance,
the velocity at s:

v =

√
k

m

(
A2 − s2

)
= ω

√(
A2 − s2

)

7.3 Pendulums

The bob at the end of a perfectly rigid pendulum arm traces
a circular arc. Excluding drag, two forces act on the bob:
its weight, and the tension force exerted by the arm, which
opposes the weight’s radial component, and also produces
the centripetal force. If θ is the counterclockwise angle
from the center line to the arm, then the angle between w⃗
and the radial line is also θ:

θ

L

θ

w⃗

w⃗t

T⃗

w⃗r

s

so that the tangential component:

wt = −mg sin θ

Because w⃗t always points toward the equilibrium position,
it acts as a restoring force. In this case, however, it varies

with the angular displacement, not the translational dis-
placement, as in a spring. If the arm is massless, the tan-
gential acceleration of the bob:

at = −g sin θ

If L is the length of the arm, then the displacement along
the arc from the equilibrium position s = Lθ. The small
angle approximation holds that sin θ ≈ θ when θ ≪ 1. This
allows sin θ ≈ s/L when s ≪ L, so that:

at ≈ − g

L
s

This matches the acceleration of an oscillating spring.
Drawing on the other spring findings produces:

ω ≈
√

g

L

For small amplitudes, the pendulum’s frequency and pe-
riod are independent of the bob’s mass. Much like k and
m in an oscillating spring, g relates the storage of poten-
tial energy to a displacement, while L relates the storage
of kinetic energy to a speed, since a longer arm produces a
greater tangential velocity for a given angular velocity.

If the arm does have mass, the motion must be understood
as a rotation of the entire pendulum, rather than a trans-
lational motion by the bob through a circular path. If r
is the distance from the pivot to the center of mass, the
combined tangential weight produces torque:

τ = −rwt = −rmg sin θ

Using the small angle approximation again:

τ ≈ −rmgθ = −rwθ

so that:

ω ≈
√

rw

I

for small amplitudes. In this case, the moment arm and the
weight relate the storage of potential energy to a displace-
ment, while the moment of inertia I relates the storage of
rotational kinetic energy to a speed.

7.4 Damped oscillation

A damped oscillation is one that decreases in amplitude
over time. Damping is caused by dissipative forces like
friction and drag. At low velocities, drag varies with speed
in a roughly linear manner, so its damping force can be
estimated as:

D⃗ = −bv⃗
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b is the damping constant. This quantity produces a
force when multiplied by a velocity, so its unit is kg/s. Be-
cause the damping is produced by a dissipative force, the
oscillator’s energy is not conserved over time.

Simple harmonic motion is produced by a restoring force
like Fr = −ks. If that force is combined with a damping
force, then the net force:

F = −ks− bv = ma

From this it is seen that:

a+
b

m
v +

k

m
s = 0

Expressing this as an equation of motion:

d2s

dt2
+

b

m

ds

dt
+

k

m
s = 0

This is the original equation for simple harmonic motion
with an added ds/dt term to represent damping.

After solving for the displacement:

s = e−bt/2mA cos(ωt+ ϕ0)

This is a sinusoid with an exponentially decaying enve-
lope that gives the greatest possible displacement at each
point:

smax = e−bt/2mA

The angular frequency:

ω =

√
k

m
− b2

4m2
=

√
ω2

u −
b2

4m2

with ωu representing the undamped angular frequency.
Damping lowers the frequency relative to the undamped
oscillator, but that frequency remains constant over time,
as before.

A damped oscillator’s time constant:

τ =
m

b

gives the relationship between the mass, which resists the
damping, and the damping constant. It is measured in
seconds. From this, the envelope:

smax = e−t/2τA

Because the total energy E varies with the maximum po-
tential energy at each point, and because the potential en-
ergy varies with the maximum displacement:

E =
1

2
ks2max = e−t/τ · 1

2
kA2 = e−t/τEu

Eu is the energy without damping, which is also the en-
ergy when t = 0. The sign of the exponent is negative, so
smaller τ values produce stronger damping. e−1 ≈ 0.37,
so when t = τ , the oscillator has approximately 37% of its
original energy.

Driven oscillation occurs when an oscillator is subjected
to a periodic external force. The rate at which the force
acts is called the driving frequency, and the effect of
different frequencies is given by the oscillator’s response
curve, which graphs the amplitude of the resulting oscil-
lation against each driving frequency. In this curve, a peak
will be found at the oscillator’s natural or resonant fre-
quency f0, which is the rate at which it would oscillate
in response to a single disturbance. Smaller damping con-
stants produce taller, narrower peaks.

8 Fluids

A fluid is any substance that flows, including liquids and
gases. In a liquid, molecules are connected by weak bonds
that hold the liquid together while still allowing molecules
to move around each other. Because these molecules are
close together, liquids are largely incompressible. In a gas,
molecules move freely without interacting, except when
they happen to collide. Because these molecules are loosely
distributed, gases are highly compressible.

For an object with mass m and volume V , the mass den-
sity:

ρ =
m

V

Its unit is kg/m3.

8.1 Pressure

Given a force F⃗ perpendicular to area A, the pressure
against the area:

p =
F

A

Note that pressure is not a force, but rather a ratio of force
to area. The SI unit for pressure is the pascal, Pa = N/m2.
The standard atmosphere is a unit equal to the average
pressure at sea level:

1 atm ≡ 101, 300Pa ≈ 14.7 psi
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In a contained liquid, pressure is produced by gravity, the
force of which distributes mechanically against the con-
tainer’s bottom and sides. Gravity also contributes slightly
to the pressure near the bottom of a contained gas, but
most of the gas pressure in a small container is produced
by thermal effects.

Given a container of unmoving liquid, a column can be de-
fined that extends from any area A at depth d up to the
surface. This column is subject to three forces: an atmo-
spheric pressure force p0A that pushes down from the top,
another force pA that pushes up from the liquid beneath,
and the column’s weight mg. Because the column is not
moving, these forces must balance:

pA = p0A+mg

Because m = ρdA, the liquid’s hydrostatic pressure:

p = p0 + ρgd

so that every change in depth produces a proportional
change in pressure:

∆p = ρg∆d

This applies only to liquids because they are mostly incom-
pressible, giving constant ρ at all d. The relationship does
not hold for gases. Because the ρgd term varies only with
d, it follows that a change in pressure at any point must
be matched by an equal change in pressure at all other
points, once equilibrium is achieved; this is called Pas-
cal’s principle. A contiguous volume of liquid will flow
to the same level in all open areas of a container, regardless
of its shape, and the pressure will be the same at all points
within a given horizontal plane.

The pressure of the gas in a container can be measured
with a manometer, a U-shaped tube, one end of which is
connected to the container, while the other is open. Within
the tube is a dense liquid such as mercury. The liquid will
settle at one level in the branch that is connected to the
container, and at another in the open branch:

p

p0

h

p0 + ρgh

p0

The pressure at the level in the connected branch is equal
to the gas pressure within the container. The pressure at
the same point in the open branch is equal to the atmo-
spheric pressure, which presses down on the liquid, plus
ρgh, with being h the amount by which the open level ex-
ceeds the connected level. The pressure at these points is
equal, so the gas pressure must be p0 + ρgh.

Atmospheric pressure can be measured with a barometer,
which is constructed by sealing a tube at one end, sub-
merging and filling it within a liquid, and then raising the
sealed end above the level of the liquid, while leaving the
other end submerged. If the tube is tall enough, a vacuum
will form at its top. The pressure at the surface of the
liquid matches the ambient pressure, the pressure at the
same point within the tube also matches the ambient pres-
sure, and yet the pressure at that point is simultaneously
equal to ρgh, where h is the amount by which the level in
the tube exceeds the open level. The ambient pressure is
therefore found to be ρgh. At one atmosphere, a mercury
barometer measures 760 millimeters.

Rather than measuring the absolute pressure p that is used
in most calculations, many gauges show the gauge pres-
sure:

pg = p− 1 atm

Zero gauge pressure represents the ambient pressure.

8.2 Hydraulics

A hydraulic lift is constructed by connecting a narrow ver-
tical piston with area AN to a wider one with area AW:

AW

AN

F⃗N F⃗W

h

p0 +
FN

AN
p0 +

FW

AW

+ρgh

When force F⃗N presses down on the narrow piston, the
pressure at that piston’s face is p0 + FN/AN. If force F⃗W

presses down on the wider piston, and if h is the verti-
cal distance from the narrow piston to the wider one, the
pressure at the same level within the wider piston must be
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p0 + FW/AW + ρgh. This gives:

FN

AN

=
FW

AW

+ ρgh

so that:

FW =
AW

AN

FN −AWρgh

When h is small, the force is multiplied by a value close
to the ratio of the areas. Because the pistons are oriented
vertically, the effect diminishes as the weight of the liquid
in the wider piston increases.

Because liquids are incompressible, displacing a volume in
one piston causes a like volume to be added to the other.
If the narrow piston is depressed by distance dN, the wider
piston must rise by distance:

dW =
AN

AW

dN

This shows in part how energy is conserved by the system;
though the wider piston is subject to and reacts with a
greater force than the narrow piston, the force acts over a
shorter distance. In this vertical orientation, a portion of
the input energy is also stored in the liquid as gravitational
potential energy.

8.3 Buoyancy

An object submerged in a fluid, whether liquid or gas, is
subject to greater pressure on its bottom surface than on
its top; this difference produces the buoyant force, which
pushes the object up. To calculate the force, consider that
any shape can be modeled as a collection of vertical cylin-
ders. If a given cylinder has height h, then the pressure dif-
ference between its bottom and top ∆p = ρgh. Because the
pressure force F = pA, the amount by which the bottom
force exceeds the top is equal to ρghA, which is itself the
weight of the displaced fluid. This is called Archimedes’
principle. Given a completely submerged object of volume
V , the buoyant force:

FB = ρVg

When an object’s average density matches that of the fluid
surrounding it, its weight is exactly canceled by the buoy-
ant force. Such an object is said to have neutral buoy-
ancy.

An object that is less dense will float, with part of its vol-
ume above the fluid level, so that the buoyant force exactly

matches the object’s weight. Given an object with volume
Vo and homogeneous density ρo, and given fluid density ρf

and displaced fluid volume Vf :

ρfVfg = ρoVog

Therefore, when ρo < ρf , the ratio of the displaced fluid
volume to the object volume as a whole:

Vf

Vo

=
ρo

ρf

8.4 Fluid dynamics

In a laminar flow, fluid moves in discrete layers or strands
that do not cross, and do not produce swirls or eddies, and
the flow rate at any point is constant over time. At higher
flow rates, layers and strands begin to mix, and flow rates
change over time, producing turbulent flow. A flow is
irrotational if the vector field representing the flow has
zero curl at all points.

The ideal fluid model offers a simplified description of
motion within fluids. It assumes the fluid is incompressible
and nonviscous, and that the flow is laminar and irrota-
tional. In this model, the trajectory followed by a small
volume of fluid is called a streamline. A collection of ad-
jacent streamlines is called a flow tube. Though a flow
tube may vary in shape or cross-sectional area, it contains
the same set of streamlines throughout its length. A flow
tube may traverse an open body of fluid, or it may flow
within a chamber or pipe, and passing between these does
not affect the tube unless its cross-sectional area changes.
Given fluid speed v and cross-sectional area A, the volume
flow rate at a particular point:

Q = vA =
∆s

∆t
A =

V

∆t

The SI unit for this quantity is m3/s. Though v and A can
vary, Q and V must be constant along the tube’s length;
this is expressed in the equation of continuity as:

v1A1 = v0A0

with v0 and v1 being the fluid speed at two points, and
A0 and A1 the cross-sectional area at those points. This
requires that the fluid move faster in narrower sections of
the tube.

Because pA = F , a section of arbitrary length within any
flow tube is subject to two forces that press against its
ends. The force on the intake has the same direction as
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the flow, so it performs positive work on the section as the
fluid advances by increment ∆s:

W0 = F0(∆s)0 = p0A0(∆s)0 = p0V

The force on the outlet is calculated similarly, yet it op-
poses the flow, so it performs negative work. The total
work performed on the section over ∆t:

We = p0V − p1V

If the intake has vertical position y0, and if the outlet has
position y1, the change in gravitational potential energy:

∆U = mgy1 −mgy0

= ρVgy1 − ρVgy0

The change in kinetic energy:

∆K =
1

2
mv2

1 −
1

2
mv2

0

=
1

2
ρVv2

1 −
1

2
ρVv2

0

Equating the work performed on the section with the
changes in kinetic and potential energy gives the energy
equation for the flow:

We = ∆K +∆U

p0V − p1V =
1

2
ρVv2

1 −
1

2
ρVv2

0 + ρVgy1 − ρVgy0

This produces Bernoulli’s equation:

p1 +
1

2
ρv2

1 + ρgy1 = p0 +
1

2
ρv2

0 + ρgy0

which shows that pressure is a form of potential energy,
with p + 1

2
ρv2 + ρgy being constant at all points within

the flow tube. When the vertical position is constant, this
requires that an increase in speed produce a decrease in
pressure. When the velocity is constant, an increase in
gravitational potential energy also produces a decrease in
pressure, which matches the results for hydrostatic pressure
at different depths.

The flow speed of a gas can be measured with a Venturi
tube, which consists of a wide chamber followed by a nar-
row chamber, with the arms of a U-shaped tube connected
to each. The tube contains a quantity of liquid:

p1p0

h

The gas flows through the chambers. Because the second
chamber is narrower, the pressure there is lower, which
causes the level in that arm of the tube below to rise, as
in a manometer. If p0 and p0 are the pressures in the two
chambers, ρ the density of the liquid, and h the amount by
which the level in the second arm exceeds that of the first:

p1 = p0 − ρgh

By the equation of continuity:

v1 =
A0

A1

v0

After substituting into Bernoulli’s equation, the potential
energy terms can be discarded, since the chambers have
the same vertical position. This produces:

p0 +
1

2
ρv2

0 = (p0 − ρgh) +
1

2
ρ
(A0

A1

v0

)2

Solving for v0 gives:

v0 = A1

√
2ρgh

ρ(A2
0 −A2

1)

Because gas is compressible, it cannot be considered an
ideal fluid. However, this estimate produces adequate re-
sults at speeds much below the speed of sound.

Real fluids are at least somewhat viscous. As a solid object
moves through a viscous fluid, a thin boundary layer of
fluid adheres to it. This layer is nearly still relative to the
surface of the object. At higher speeds, the boundary layer
separates from the back of the object to form a turbulent,
low-pressure region called a wake. The pressure difference
between this area and the front contributes to the drag
force on the object.

9 Elasticity

Hooke’s law provides a basic model of the force necessary
to stretch an elastic object to a given length. In its general
form:

F = k∆s

For most objects, when F is graphed against ∆s, the force
varies linearly almost to the end of the elastic region, which
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ends at the yield strength, where permanent deformation
occurs. The object will not return to its original shape af-
ter being stressed this far, but it will continue to resist the
force until the ultimate strength is reached, at which
point it will rupture.

In Hooke’s law, the spring constant is specific to the shape
and material of the object. Because the object’s macro-
scopic properties derive from molecular phenomena, its
elasticity at the large scale can be understood by general-
izing about molecular bonds. If a rod with cross-sectional
area A is pulled with force F , the force on each bond must
be proportional to F/A. This ratio is the tensile stress
affecting the object. Though tensile stress is mathemati-
cally equivalent to pressure, it acts in a specific direction,
so it is often expressed in N/m2 rather than pascals.

If the rod has length s, and if it is stretched by distance ∆s,
the length by which each bond is stretched must be pro-
portional to ∆s/s. This relative deformation is the tensile
strain affecting the object. Tensile strain has no units.

Within the rod, as long as the total force remains within
the linear range of the elastic region, each bond can be
modeled as a distinct spring. Though the exact force and
displacement affecting the bonds may be unknown, Hooke’s
law allows them to be related with:

F

A
= Y

∆s

s

The constant Y , representing the material’s resistance to
deformation, is called Young’s modulus. Because strain
has no units, the modulus is expressed in N/m2, like stress.
The equation shows that the stress necessary to produce
a given strain is equal to the strain multiplied by Young’s
modulus. Rigid materials have higher values for Y .

Young’s modulus is also used when modeling compressive
stress from a single direction. Shear stress is produced by
forces that are parallel to the object’s cross section, with
the resulting strain deforming rectangular profiles into par-
allelograms. This type of stress is modeled with the shear
modulus, which has the same units as Young’s modulus,
and is calculated in the same way.

Because Hooke’s law gives F/∆s = k:

Y =
F

A
· s

∆s
=

s

A
k

This allows the modulus to be determined by measuring
the spring constant of an object with length s and cross-
sectional area A.

While tensile stress pulls an object from a single direction,
volume stress pushes an object from all directions; in

this it resembles pressure. The relative amount ∆V/V by
which the object’s volume decreases is called the volume
strain. Much as tensile stress varies linearly with tensile
strain, volume stress varies linearly with volume strain:

∆p = −B
∆V

V

so that:

B = − ∆p

∆V/V

The constant B, representing the material’s resistance
to compression, is called the bulk modulus. Less-
compressible materials have higher B values. B is negated
relative to ∆p because an increase in pressure decreases the
object’s volume.

10 Matter and temperature

The molecules in a solid are closely packed, and each is
held in place by molecular bonds. In a crystal, molecules
are arranged in a periodic pattern. In an amorphous
solid, they are arranged at random. Solids are nearly in-
compressible.

The molecules in a liquid are joined by weaker bonds that
hold them together without locking them into place. Liq-
uids are also largely incompressible.

The molecules in a gas are not bonded to each other, and
they rarely interact at all. Gasses are mostly empty space,
so they are highly compressible.

An atom’s atomic mass number is the number of pro-
tons and neutrons it contains; this is displayed with a su-
perscript before the atom’s chemical symbol. The atomic
mass unit u is defined to be one-twelfth the mass of an
electrically-neutral 12C atom:

1 u ≈ 1.661× 10−27 kg

An atom’s atomic mass is equal to its mass number mul-
tiplied by the mass unit; this provides a close approxima-
tion of the atom’s true mass. The molecular mass of a
molecule is the sum of the atomic masses of its atoms.

One mole of matter contains a number of molecules equal
to Avogadro’s number, which is the number of atoms in
12 grams of 12C:

NA ≈ 6.02× 1023 mol−1

As a result, a mole of any substance has mass, measured in
grams, equal to the molecular number of that substance.
This is the molar mass of the substance.
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10.1 Temperature

A system’s state variables are the qualities necessary to
predict its future behavior. Volume, pressure, and temper-
ature are state variables, and when these are constant over
time, the system is said to be in thermal equilibrium.

Unlike thermal energy, which has both kinetic and poten-
tial components, temperature is a measure of kinetic en-
ergy at the molecular level. An absolute temperature
is measured relative to absolute zero, where thermal en-
ergy is zero. The absolute pressure of a gas in a sealed
container increases linearly with its absolute temperature.
A constant-volume gas thermometer is produced by
attaching a pressure gauge to such a container. After being
calibrated at two temperatures, this instrument can infer
the ambient temperature from any other pressure.

As a solid is heated, its temperature increases until it
reaches the melting or freezing point. Below this point,
the substance is entirely solid; above, it is entirely liquid
or gas. At this one temperature, it might be any combina-
tion of solid and liquid, and though it continues to absorb
thermal energy, its temperature does not rise again un-
til it has completely melted. Its temperature then rises to
the boiling or condensation point, where another phase
change occurs. Temperature is constant during these phase
changes because the incoming energy is consumed by the
destruction of molecular bonds, which produces molecular
potential energy without increasing kinetic energy. The
system’s thermal energy, by contrast, does increase during
phase changes.

A substance’s melting and boiling points vary with pres-
sure. A phase diagram displays temperature on the hori-
zontal axis and pressure on the vertical, and within it shows
the three regions where the substance is a gas, liquid, or
solid. The lines separating these regions mark phase tran-
sitions:

T (°C)

p (atm)

0 100 374

0.006

1

218

0.01

STEAM

WATER

ICE

The gas region occupies the lower-right area, while the
upper-left is split between the solid and liquid regions. The
regions meet at the triple point, which is the only com-
bination of temperature and pressure that allows the three
phases to coexist. At pressures below the triple point, the
substance sublimes directly from solid to gas as the tem-
perature increases. In most substances, the solid form is
denser than the liquid, so the solid/liquid boundary that
rises from the triple point has a positive slope; this implies
that increasing the pressure eventually causes a liquid to
solidify. However, because water ice is less dense than liq-
uid water, its phase boundary has a negative slope. The
critical point is found at the far end of the line separat-
ing the gas and liquid regions. No clear distinction between
gas and liquid exists at temperatures and pressures above
this point; no phase transitions occur, and density varies
continuously as temperature and pressure vary.

10.2 Ideal gases

Real atoms attract each other when they are close, but
repel each other when they are too close. In the energy
diagram for this interaction, U has an increasingly steep
slope at short distances, showing the strong repulsive force
that prevents solids and liquids from being compressed:

se

U
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The function drops to a trough at the equilibrium position,
and then rises to an essentially flat line where the atoms
no longer interact.

The ideal gas model derives from a simplified version of
this function, with a vertical line at the contact distance,
and zero values everywhere beyond. The particles in an
ideal gas never attract each other, their collisions are per-
fectly elastic, and they store no molecular potential energy,
since they are imagined as small structureless spheres. This
provides a good approximation of real gas behavior, as long
as the density is low and the temperature is well above boil-
ing.

Assume that n moles of a gas in thermal equilibrium are
contained within volume V , and let the pressure of the gas
be p, and its temperature T . Experimentally, it is seen that
pV varies linearly with nT , and the slope of this variation
is the same for gases of any substance. This is expressed in
the ideal gas law:

pV = nRT

with the universal gas constant:

R ≈ 8.31 J/molK

Because there are no phase changes or other molecular po-
tential energy in an ideal gas, T varies with the average
thermal energy of the gas particles, while pV varies with
the energy in the system as a whole. Moreover, p∆V rep-
resents work, so nR∆T must do the same. This shows that
the law is fundamentally a relationship between mechanical
and thermal energy.

n is constant in a sealed container, so pV/T = nR is con-
stant too. This gives:

p1V1

T1

=
p0V0

T0

for all points in time. This is consistent with the notion
that pV and T both vary with the thermal energy of the
system. The particular change in each variable depends
on the thermodynamic process affecting the system, which
constrains certain variables while leaving others open.

If N is the number of particles in the container, then
n = N/NA. This allows the ideal gas law to be restated as:

pV = NkBT

with Boltzmann’s constant giving the gas constant at
the molecular scale:

kB =
R

NA

≈ 1.38× 10−23 J/K

From this it is seen that the gas density, in particles per
cubic meter:

N

V
=

p

kBT

At standard temperature and pressure, the average dis-
tance between gas molecules is approximately 5.7 nanome-
ters. For comparison, the kinetic diameter of an N2

molecule is 0.364 nanometers.

10.3 Ideal gas processes

A pressure-volume diagram graphs pressure against
volume for a quantity of gas within a sealed container. The
container may change its volume, but no gas will enter or
leave. Curves in the diagram show how pressure and vol-
ume vary as the system moves from one state to another.
Because pV/T is constant in this container, the tempera-
ture is uniquely determined at each point in the diagram,
though its value is not given by the diagram itself. Techni-
cally, the ideal gas law applies only to systems in thermal
equilibrium, and such systems do not change; for this rea-
son, the diagrammed ideal gas processes are imagined
to be quasi-static, meaning that they proceed so slowly
that each point can be considered an equilibrium. This
implies that ideal gas processes are reversible, unlike real-
world processes.

In an isochoric process, volume is constant over time,
so that pressure varies linearly with temperature. This is
represented in a pressure-volume diagram with a vertical
line that leads from one temperature to another. Heating
a constant-volume gas thermometer produces this type of
process.

In an isobaric process, pressure is constant over time,
so that volume varies linearly with temperature. This is
represented with a horizontal line that leads from one tem-
perature to another. This process occurs when a gas-filled
piston is heated while being compressed by a constant ex-
ternal force. As the temperature increases, the pressure
increases slightly, producing a net force that expands the
piston and returns it to the equilibrium pressure, which
balances the external force.

In an isothermal process, temperature is constant over
time, so that total thermal energy is constant, and p1V1 =
p0V0. For a given T , this constraint is represented with a
hyperbolic curve called an isotherm, where:

p = nR · T
V
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Each isotherm shows the pressure/volume combinations
that are possible at that temperature:

p

V

T0

T2

T1

This process can be produced by slowly compressing a gas-
filled piston while also cooling it to a constant temperature,
so that the work performed on the gas is exactly offset by
the heat lost to the environment. This balance between
work performed on or by the system and heat lost to or
absorbed from the environment is part of any isothermal
process. Unlike isochoric and isobaric processes, an isother-
mal process can theoretically be reversed without changing
the temperature of the heating or cooling medium.

11 First law of thermodynamics

11.1 Ideal gas processes and work

The working substance in a thermodynamic system is
the gas or other material that changes state to perform
work.

A gas-filled piston with internal pressure p and piston area
A exerts force pA on the environment. As the piston ex-
pands by ds, the work performed on the environment is
pA ds = p dV . Conversely, the work performed on the gas:

dW = −p dV

The same result holds for a volume of any shape that ex-
pands through area A with pressure p. Given a process
that begins at V0 and ends at V1:

W = −
∫ V1

V0

p dV

Note that p is likely to vary with V , and if it does, it must
be expressed as a function of V .

Work performed on the system produces a decrease in vol-
ume, represented in its pressure-volume diagram as a move-
ment from right to left. Though a low-pressure gas might
seem to pull on the environment, it is impossible for a gas
to pull anything, as its molecules are not bonded. Any
compression must be produced by an outside force that
overcomes the internal pressure. As a result, compression
always represents the performance of work on the gas, not
by it.

Geometrically, in processes that decrease the system’s vol-
ume, positive quantity W = −

∫
p dV is seen to be the

area under the pressure-volume curve. In processes that
increase its volume, negative quantity W is the negative of
that area. Because dW varies with p, different paths be-
tween the start and end points produce different amounts
of work. If a set of processes returns the system to its start-
ing point, then a closed figure is formed in the diagram. If
the volume changes at all, some of the processes must in-
crease it, and others must decrease it by a like amount,
though possibly at a different pressure. The area within
the figure therefore gives the net work performed on or by
the system. If the movement around the figure is clockwise,
then the system expands when pressure is high and con-
tracts when it is low. This shows that the work performed
on the environment is greater than the work performed
on the system, and W is negative. Conversely, when the
movement is counterclockwise, the work performed on the
system is greater, and W is positive.

In an isochoric process, V is constant, so no work is per-
formed. In an isobaric process, p is constant, so:

W = −p∆V

In an isothermal process, volume and pressure both change.
By the ideal gas law, p = nRT/V , so that:

W = −nRT

∫ V1

V0

1

V
dV = −nRT ln

(V1

V0

)
Because nRT = p0V0 = p1V1, it is also true that:

W = −p0V0 ln
(V1

V0

)
= −p1V1 ln

(V1

V0

)
As will be seen, if this amount of work is performed on the
system, the same amount of energy must be lost as heat if
the temperature is to remain constant.
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11.2 Heat

The SI unit for heat is the joule. Historically, the unit
for heat was the calorie, defined as the amount needed to
raise the temperature of one gram of water by one degree
Celsius:

1 cal ≈ 4.186 J

The large calorie, kilogram calorie, or food calorie used to
measure food energy is a different unit, with:

1Cal = 1000 cal ≈ 4186 J

Technically, heat is a quantity of thermal energy that is
transferred because of a temperature difference between a
system and its environment; it is not a synonym for all
thermal energy. Like work, heat changes the energy of the
system. If W is the work performed on the system, and if
Q is the heat transferred to it:

∆Es = W +Q

It is also true that ∆Es = ∆Em +∆Et. If Em is constant,
so that neither the kinetic nor the potential energy of the
system as a whole changes:

∆Et = W +Q

This is the first law of thermodynamics. For a system
with constant mechanical energy, the change in thermal
energy is equal to the work performed on the system by its
environment, plus the heat absorbed by the system.

The specific heat or heat capacity of a substance is the
energy needed to raise the temperature of one kilogram of
that substance by one kelvin. Given specific heat c and
mass M :

∆Et = Mc∆T

This energy can be supplied through mechanical means,
such as mixing, or as heat. By the first law, if no work is
performed:

Q = Mc∆T

A given material has different specific heat values in its
solid, liquid, and gas forms. As will be seen, the specific
heat of a gas also varies with the process that produces
the temperature change, and with the amount of work per-
formed by that process.

The molar specific heat is the energy needed to raise the
temperature of one mole of the substance by one kelvin.
Given molar specific heat C and molar quantity n:

Q = nC∆T

n varies with M according to the molar mass of the sub-
stance. Therefore, if Mm is the molar mass, in grams:

C =
Mm

1000 g/kg
c

Molecular bonds must be broken or formed as a substance
changes phase. The heat of transformation is the en-
ergy consumed or released as one kilogram of the substance
undergoes such a change. The heat of fusion Lf gives the
energy associated with a change between solid and liquid,
while the heat of vaporization Lv gives the energy for a
change between liquid and gas.

11.3 Specific heat of gasses

Assume that an isochoric process and an isobaric process
start at the same pressure and volume, and that both end
at different points on the same isotherm:

p

V

T0

T1
isobaric

is
o
ch

o
ri
c

∆T is the same for both processes. Because phase changes
do not occur in an ideal gas, ∆Et varies directly with ∆T ,
making ∆Et the same for each path. Because ∆Et =
W+Q, any variation in Q for the two processes must be as-
sociated with an offsetting variation in W . This is true for
all processes that move between the same two isotherms.

If CV is the specific heat of the gas in the isochoric process:

QV = nCV∆T

No work is performed without a change in volume, so:

∆Et = nCV∆T
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Because the specific heat is a general correlation between
energy and temperature changes, this relationship holds for
all ideal gas processes, even those that are not isochoric.
In the isobaric process:

WP = −p∆V

According to the ideal gas law, pV = nRT . When p is
fixed, this allows p∆V = nR∆T , so that:

WP = −nR∆T

If CP is the specific heat of the gas in the isobaric process:

QP = nCP∆T

Therefore:

∆Et = WP +QP = −nR∆T + nCP∆T

This statement is not true for non-isobaric processes; their
work is not equal to −p∆V , so it cannot be related to the
ideal gas law in the same way.

After equating the findings for ∆Et:

nCV∆T = −nR∆T + nCP∆T

so that:

CP = CV +R

CP and CV represent the heat needed to produce a temper-
ature change. Although ∆Et = nCV∆T for all processes,
it is now seen that the heat necessary to produce ∆T is
specific to the process, and in particular, to the amount of
work it performs, here represented by R. That is because
some of the thermal energy may be converted to or from
mechanical energy.

Similarly, two processes that begin and end at the same
two points must produce the same change in thermal en-
ergy. Given process H that changes volume at a higher
pressure, and process L that does so at a lower pressure:

WH +QH = WL +QL

When the volume expands, work W performed on the
system is negative. Because |WH| > |WL|, this means
WH < WL and QH > QL, so the process that performs
more work either absorbs more heat or releases less. When
the volume contracts, WH > WL and QH < QL, so the pro-
cess that absorbs more work either releases more heat or
absorbs less.

11.4 Adiabatic processes

The first law relates ∆Et to W and Q. In an isothermal
process, the temperature does not change, so W = −Q. In
an isochoric process, no work is performed, so ∆Et = Q. In
an adiabatic process, no heat is exchanged, so ∆Et = W .
This type of process is produced by insulating the system
during the volume change, or by changing the volume so
quickly that there is no time for heat to transfer. Gas
temperature is increased by adiabatic compression, and de-
creased by adiabatic expansion.

∆Et = nCV∆T , so in an adiabatic process:

W = nCV∆T

Because W = −p∆V :

−p∆V = nCV∆T

−p dV = nCV dT

The ideal gas law gives p = nRT/V , so:

−nRT

V
dV = nCV dT

− R

CV

· dV
V

=
dT

T

The specific heat ratio, which is also known as the heat
capacity ratio, the adiabatic index, or Laplace’s co-
efficient:

γ =
CP

CV

Because R = CP − CV:

R

CV

=
CP − CV

CV

= γ − 1

− R

CV

= 1− γ

Therefore:

(1− γ)
dV

V
=

dT

T

Summing over the volume and temperature ranges:

(1− γ)

∫ V1

V0

1

V
dV =

∫ T1

T0

1

T
dT

(1− γ) ln
V1

V0

= ln
T1

T0(V0

V1

)γ−1

=
T1

T0
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produces:

T1V
γ−1
1 = T0V

γ−1
0

Finally, because T = pV/nR:

p1V
γ
1 = p0V

γ
0

The process is represented in the pressure-volume diagram
with an exponential curve called an adiabat:

p

V

T0

T1

Given constant k, equal to pnV
γ
n for any point n in the

process, the pressure at any other point:

p =
k

V γ

Because W = nCV∆T , and because ∆T = ∆(pV )/nR:

W =
CV

R
∆(pV )

As already shown, R/CV = γ − 1, so:

W =
p1V1 − p0V0

γ − 1

12 Kinetic theory

12.1 Mean free path

The particles in a gas have random velocities. If two par-
ticles have velocities v⃗0 and v⃗1, their relative velocity:

v⃗r = v⃗1 − v⃗0

Using the dot product to square this vector produces
the sum of the squares of its components, which, by the
Pythagorean theorem, is the square of the relative speed:

v⃗r · v⃗r = v2
r:x + v2

r:y + v2
r:z = v2

r

If that value is averaged:

v2
r = v⃗r · v⃗r

then the root-mean-square of the relative speed:

(vr)rms =

√
v⃗r · v⃗r

=

√
(v⃗1 − v⃗0) · (v⃗1 − v⃗0)

=

√
v⃗0 · v⃗0 − 2v⃗0 · v⃗1 + v⃗1 · v⃗1

The velocities are uncorrelated, so the average of their cor-
relation v⃗0 · v⃗1 must be zero, producing:

(vr)rms =

√
v⃗0 · v⃗0 + v⃗1 · v⃗1 =

√
v2
0 + v2

1

However, v2
0 and v2

1 are both equal to the average of the
square of the particle speed v2. Therefore, the root-mean-
square relative speed:

(vr)rms =
√
2v2 =

√
2 vrms

If vr is correlated with v in the same way as the root-mean-
square values:

vr =
√
2 v

Particle collisions are modeled as though each particle were
a sphere with radius r; in a monatomic gas, this is roughly
0.05 nanometers. Two such spheres will collide if the dis-
tance between their centers is less than 2r, so, as each
sphere moves over period ∆t at relative speed

√
2 v, it tra-

verses a cylinder with radius 2r, and a collision occurs if
the center of another sphere enters that cylinder. If the sys-
tem contains N particles, and if ∆t is short enough that
no cylinders intersect, the total volume of all cylinders:

Vc = π(2r)2 ·
√
2 v∆t ·N

= 4
√
2πr2v∆tN

If the system has volume V , the probability that one center
will be within Vc during ∆t:

P =
Vc

V
=

4
√
2πr2v∆tN

V

so that the probability density for an arbitrary time span:

P

∆t
=

4
√
2πr2vN

V

The reciprocal of this value is the expected time between
collisions. Multiplying by the average speed then gives the
average distance between collisions, this being known as
the mean free path:

λ =
∆t

P
v =

V

4
√
2πr2N

=
1

4
√
2πr2(N/V )

Note that N/V is the particle density.
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12.2 Gas pressure

In a stationary volume of gas, the average vs of the particle
velocities for any component s is necessarily zero. A more
useful measure of gas velocities can be derived from the
root-mean-square speed:

vrms =
√
v2

Because v2 = v2
x + v2

y + v2
z :

(vrms)
2 = v2

x + v2
y + v2

z

However, these components are equal on average, so:

(vrms)
2 = 3v2

s

for arbitrary component s, and:

v2
s =

1

3
(vrms)

2

As shown earlier, if one object strikes a much more mas-
sive resting object, and if the collision is perfectly elastic,
the smaller object will rebound at nearly its original speed.
Because it is so small, a single gas particle with perpendic-
ular velocity component vc can be assumed to rebound at
velocity −vc after striking the side of its container. If the
particle has mass m, its momentum change:

∆p = −2mvc

This change is produced by an impulse, and, by Newton’s
third law, an equal and opposite impulse affects the con-
tainer. If Fc is the average force during the collision, and
if ∆tc is its duration, then this impulse:

J = Fc∆tc = 2mvc

while the average force during the collision:

Fc =
2mvc
∆tc

If every particle is assumed to have perpendicular speed vc,
then the half of these that move toward the side will travel
∆s = vc∆tc during ∆tc, and those within ∆s of the side
will strike it. If the side has area A, the volume containing
these particles must be A∆s. If the system as a whole con-
tains N particles in volume V , the number that will strike
the side:

Nc =
A∆s

2

(N
V

)
=

Avc∆tc
2

(N
V

)
The total force from all collisions:

F = NcFc =
Avc∆tc

2

(N
V

)(2mvc
∆tc

)
= mv2

cA
(N
V

)

For a more general result, it can be assumed that vc =
(vs)rms for perpendicular component s. Because the square
of this value is v2

s :

F = mv2
sA
(N
V

)
=

1

3
m(vrms)

2A
(N
V

)
Dividing by A gives the pressure against the side:

p =
1

3
m(vrms)

2
(N
V

)

12.3 Gas temperature

For a particle with mass m and speed v, the kinetic energy:

ϵ =
1

2
mv2

Because v2 = (vrms)
2, the average of this energy:

ϵ =
1

2
mv2 =

1

2
m(vrms)

2

From this it follows that (vrms)
2 = 2 ϵ/m and:

p =
2

3
ϵ
N

V

By the ideal gas law, pV = NkBT , so that:

NkBT =
2

3
ϵN

and:

ϵ =
3

2
kBT T =

2

3

ϵ

kB

for ideal gas particles, which have only translational en-
ergy. Note that energy varies linearly with temperature,
as expected in an ideal gas. This reflects the assumption
that particle collisions in an ideal gas are perfectly elastic.
If they were not, kinetic energy would decrease with each
collision, causing the temperature to drop over time.

Finally, because:

3

2
kBT = ϵ =

1

2
m(vrms)

2

the root-mean-square molecular speed in an ideal gas:

vrms =

√
3kBT

m



12 KINETIC THEORY 40

12.4 Thermal energy and specific heat

A system’s thermal energy includes the translational and
vibrational kinetic energy of the molecules within it, plus
the potential energy associated with stretched or com-
pressed molecular bonds:

Et = Km + Um

The molecules in a monatomic gas have no bonds, and their
kinetic energy is entirely translational, so that:

Et:G = Km = Nϵ

in a system of N molecules. Therefore:

Et:G =
3

2
NkBT =

3

2
nRT

By extension:

∆Et:G =
3

2
nR∆T

But ∆Et:G is also related to ∆T by the specific heat of the
gas, so:

nCV∆T =
3

2
nR∆T

Therefore, in any monatomic gas, the specific heat during
an isochoric process:

CV =
3

2
R

An independent parameter that partially defines a system’s
state is called a degree of freedom. Together, the degrees
of freedom define the phase space, which encompasses all
possible states for the system. A molecule’s translational
kinetic energy can be expressed as:

ϵ =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z = ϵx + ϵy + ϵz

If the molecule is not bonded to others, as in a gas, then its
potential energy is zero. If it is monatomic, its rotational
kinetic energy is zero as well. This leaves just three de-
grees of freedom for the storage of energy in a monatomic
gas. The Equipartition theorem states that the thermal
energy of a system in thermal equilibrium will be divided
equally among its degrees of freedom. Moreover, if energy
varies quadratically with a given degree of freedom, then
the energy associated with that degree:

ϵQ =
1

2
NkBT =

1

2
nRT

Because ϵx, ϵy, and ϵz vary quadratically with vx, vy, and
vz, it is seen that the thermal energy of a monatomic gas
is equal to 3

2
NkBT or 3

2
nRT , as expected.

The molecules in a solid have three degrees of freedom to
store kinetic energy, along with three to store the potential
energy of compressed or stretched bonds. Because elas-
tic potential energy varies quadratically with displacement,
the thermal energy of a solid :

Et:S = 3NkBT = 3nRT

By equating this with the specific heat expression, it is
predicted that the specific heat of the solid:

C = 3R

which is close to observed values.

Diatomic molecules have three degrees of freedom for trans-
lational kinetic energy, plus two for rotational energy about
the axes perpendicular to the bond. Kinetic and potential
energy along the bond’s axis would seem to require two
more degrees, but, at standard temperatures, quantum ef-
fects prevent energy from being stored this way. Therefore,
in a diatomic gas:

Et:D =
5

2
NkBT =

5

2
nRT

and:

CV:D =
5

2
R

which is also close to observed values. At lower tempera-
tures, the rotational degrees are lost, and at higher temper-
atures, the two vibrational degrees along the axis become
relevant.

12.5 Second law of thermodynamics

Pressure and temperature are macroscopic phenomena
that summarize or abstract microscopic events. A given
macroscopic state – for instance, a particular concentra-
tion of thermal energy within a mass – can be produced
by a number of different microscopic configurations, and
entropy is a measure of that number. Some macroscopic
states are associated with many more microscopic config-
urations than others. Because microscopic states evolve
in an essentially random manner, these states – and the
macroscopic phenomena they produce – become probabilis-
tically inevitable. This effect is expressed by the second
law of thermodynamics:



13 HEAT ENGINES AND REFRIGERATORS 41

The entropy of an isolated system never decreases;
instead, it increases until thermal equilibrium is
reached, and then it remains constant.

As a result, when two systems touch, molecular collisions
cause thermal energy to pass from the hotter system to
the cooler one; eventually all degrees of freedom in both
systems have the same average energy, giving both sys-
tems the same temperature. Assume that systems A and
B start at different temperatures. Though the tempera-
tures will change, the total thermal energy must remain
constant:

EAB = EA:0 + EB:0 = EA:1 + EB:1

If the systems have the same specific heat, and if they con-
tain NA and NB molecules respectively, their average ther-
mal energy per molecule at equilibrium:

EA:1

NA

=
EB:1

NB

=
EAB

NA +NB

so that:

EA:1 =
NA

NA +NB

EAB

EB:1 =
NB

NA +NB

EAB

13 Heat engines and refrigerators

The gas in a piston presses outward with force F⃗g. If the
piston is not to be pushed from the cylinder, the environ-
ment must counter with an opposing force F⃗e. During a
quasi-static process, F⃗g = −F⃗e, so if WE is the work per-
formed by the gas, and if W is the work performed on it:

WE = −W

This allows the first law of thermodynamics to be restated
as:

Q = WE +∆Et

If the gas in the piston is heated, and if the force compress-
ing the piston is decreased as the gas expands so that pV
remains constant, then, by the ideal gas law, T will also
remain constant. Since ∆Et is zero in this case, the first
law requires that WE = Q, and the process is seen to con-
vert heat to work with perfect efficiency. The process does
not end where it started, however, so eventually it will be
unable to produce more work.

A thermodynamic cycle combines processes in a way
that does return the system to its original state. A ther-
mal reservoir is a system that is effectively constant in
temperature and thermal energy, even after another system
transfers heat to or from it. A heat engine uses a thermo-
dynamic cycle to perform arbitrary amounts of work. Dur-
ing each cycle, it extracts heat QH from a high-temperature
reservoir and exhausts heat QC to a low-temperature reser-
voir. Note that – contrary to usual practice – QC represents
energy lost by the engine, which absorbs Q = QH −QC in
total. Because each cycle returns the engine to its original
state, ∆Et is zero over the cycle as a whole. Therefore, by
the first law:

WE = QH −QC

The thermal efficiency of the engine is the ratio of work
to heat input:

η =
WE

QH

= 1− QC

QH

If QC were zero, all heat would be converted to work, and
the engine would be perfectly efficient. Heat engines typi-
cally have thermal efficiencies of 10% to 40%.

Assume that a particular heat engine proceeds through
three processes: a volume of gas is heated in an isobaric
process that performs work while increasing its volume,
then the gas is cooled in an isochoric process that lowers
its pressure, and finally an isothermal process returns the
gas to its original compressed state:

p

V

(∆V )P

(∆p)V

TT

isobaric

isotherm
al

iso
ch

o
ric

WE

Recall that Isobaric processes have constant pressure, so
that:

W = −p∆V Q = nCP∆T ∆Et = Q+W

Isochoric processes have constant volume, so that:

W = 0 Q = nCV∆T ∆Et = Q
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Isothermal processes have constant temperature, so that:

W = −pV ln
(V1

V0

)
Q = −W ∆Et = 0

They are not used in this cycle, but adiabatic processes
exchange no heat, so that:

W =
p1V1 − p0V0

γ − 1
Q = 0 ∆Et = W

In the isobaric process, QP = nCP(∆T )P of heat is trans-
ferred to the gas, causing −WP = pP(∆V )P of work to
be performed on the environment. By the ideal gas law,
p∆V = nR∆T , so −WP = nR(∆T )P.

In the isochoric process, no work is performed, and QV =
nCV(∆T )V of heat is exchanged; because (∆T )V and QV

are negative, this represents a release of thermal energy.
The gas is now at its original temperature, but it has less
pressure and more volume. (∆T )V = −(∆T )P, so:

QP +QV = nCP(∆T )P + nCV(∆T )V

= n(CP − CV)(∆T )P

= nR(∆T )P

of heat has been absorbed by the gas.

In the isothermal process, WT = −nRTT ln(VV/VP) of work
is performed on the gas to compress it, and an equivalent
quantity −QT of heat is released to keep the temperature
constant. At the end of one cycle:

QP +QV +QT = nR(∆T )P + nRTT ln(VV/VP)

of heat has been transformed into:

−WP −WV −WT = nR(∆T )P + nRTT ln(VV/VP)

of work on the environment. As a result:

QP +QV +QT = −WP −WV −WT

as required by the first law.

A refrigerator uses a thermodynamic cycle to move heat
in the direction opposite that predicted by the second law.
Where the heat engine uses heat to produce work, the re-
frigerator uses work to produce cooling. In each cycle, it
extracts QC of heat from a low-temperature reservoir and
exhausts QH to a high-temperature reservoir, so that it ab-
sorbs Q = QC−QH in total. Like the heat engine, ∆Et = 0
at the end of each cycle, so that:

W = QH −QC

A refrigerator’s coefficient of performance relates its
cooling effect to the work required to produce that cooling:

K =
QC

W

The second law shows that heat will not move sponta-
neously from the low-temperature to the high-temperature
reservoir, so W must be greater than zero. By extension,
it is impossible to produce a perfectly efficient heat engine.
If such an engine did exist, it could be used to produce
the work required by a refrigerator. The engine would ab-
sorb heat from the high-temperature reservoir, convert it
entirely to work, then the refrigerator would return that
energy back to the reservoir as waste heat, along with a
quantity of heat from the low-temperature reservoir. Taken
as a whole, this system would decrease total entropy, which
is impossible.

13.1 Brayton cycle

The Brayton cycle is used by gas turbine engines:

WE

p

V

TP TH

TE
TC

pP

pC

QH

QC

At the beginning of the cycle, gas is passed through a com-
pressor, producing adiabatic compression that increases
the gas temperature. The compressed gas flows through a
chamber where it is heated, typically by being mixed with
fuel and ignited, or sometimes with a heat exchanger. The
chamber is open at the other end, so this heating occurs
isobarically. The gas then expands adiabatically through
a turbine to produce work, until the starting pressure is
reached. At this point, the gas is exhausted, or it is cooled
with a heat exchanger before possibly being returned to the
engine. In either case, the cooling occurs isobarically, and
the gas returns to its initial state. Air-breathing jet en-
gines also use this process, but their turbines extract only
enough energy from the gas flow to drive the compressor
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and possibly a fan. The remaining energy is left to produce
thrust.

Though the gas temperature is increased by the com-
pressor, actual heating occurs only during the combustion
phase. If TP is the temperature after compression, and TH

that after combustion, the input heat:

QH = nCP(TH − TP)

Similarly, if TE is the temperature after the adiabatic ex-
pansion, and if TC is the starting temperature, the exhaust
heat:

QC = nCP(TE − TC)

Therefore, the thermal efficiency:

ηB = 1− nCP(TE − TC)

nCP(TH − TP)

= 1− TE − TC

TH − TP

pV γ is constant during an adiabatic process. By the ideal
gas law, V γ = (nRT/p)γ , so:

pV γ = p1−γ(nRT )γ

Because nR is constant, p(1−γ)T γ and p(1−γ)/γT are con-
stant as well, giving:

p(1−γ)/γ
C TC = p(1−γ)/γ

P TP

Therefore:

TC =
(pP

pC

)(1−γ)/γ

TP

The pressure ratio:

rp =
pP

pC

relates the maximum pressure to the minimum, so that:

TC = r(1−γ)/γ
p TP

By the same reasoning:

TE = r(1−γ)/γ
p TH

Returning these to the thermal efficiency equation:

ηB = 1−
r(1−γ)/γ
p (TH − TP)

TH − TP

= 1− r(1−γ)/γ
p

= 1− 1

r(γ−1)/γ
p

The specific heat ratio γ is greater than one, so higher
pressure ratios convert more of the input heat to work.

It can be shown that the work performed by one Brayton
cycle:

WE:B = nR
(
1 +

1

γ − 1

)
(TH − TP + TC − TE)

Some heat engine cycles can be reversed to create refriger-
ators:

p

V

W

QC

QH

pP

pC

TP TH

TE
TC

When the Brayton cycle is reversed, it starts, as before,
with an adiabatic compression, but this compression oc-
curs in the high-volume phase of the cycle. This increases
the temperature without heating the gas, making it hotter
than the high-temperature reservoir outside the refrigera-
tor. The gas cools isobarically in this reservoir before being
expanded adiabatically to lower its temperature below that
inside the refrigerator. The gas is then heated isobarically
within the refrigerator, which cools the interior and returns
the gas to its initial state.

In total, W work has been performed on the gas, QC heat
has been absorbed, and QH = QC +W has been released.
Note that – in order to change the direction of the process –
it is necessary to change the temperatures of the two reser-
voirs, because these temperatures determine the directions
of the two isobaric processes. In the engine, heat must be
transferred from the high-temperature reservoir to the gas,
so that reservoir must have a temperature greater than TP.
In the refrigerator, heat must be transferred from the gas
to the reservoir, so the high-temperature reservoir must
have a temperature lower than TH.
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13.2 Otto cycle

The Otto cycle is used by spark-ignition engines, com-
monly known as gasoline engines:

WE

p

V

TP

TH

TE

TC

VP VC

QH

QC

At the beginning of each two-stroke cycle, a mix of fuel
and air is injected into the piston where it is compressed
adiabatically. The fuel mixture is then ignited by a spark
plug. Because the fuel burns so quickly, there is no time
for the piston to expand, and isochoric pressure and tem-
perature increases result. The hot gas then expands the
piston adiabatically to its original volume, where an ex-
haust value opens, lowering the pressure and temperature
isochorically to their initial values. Many engines imple-
ment four-stroke cycles that use the next compression and
expansion strokes to clear exhaust and take up air and fuel,
but this is thermodynamically equivalent to the two-stroke
cycle.

It can be shown that the work performed by one Otto cycle:

WE:O =
nR

1− γ
(TP − TC + TE − TH)

Given compression ratio:

rv =
VC

VP

the cycle’s thermal efficiency:

ηO = 1− 1

rγ−1
v

Higher compression ratios increase efficiency, but they also
produce higher temperatures near the end of the compres-
sion stroke. If the gas gets too hot, the fuel will ignite on
its own, while the piston is still compressing. Fuels with
higher octane ratings can be compressed more without
causing early ignition.

13.3 Diesel cycle

The Diesel cycle also has two-stroke and four-stroke vari-
ants that are thermodynamically equivalent:

VP

WE

p

V

TP TH

TE

TC

VH

QH

QC

VC

The two-stroke cycle starts by adiabatically compressing a
volume of air, increasing its temperature. Fuel is slowly
added to the hot air, where it ignites spontaneously, pro-
ducing an isobaric expansion. The gas is allowed to expand
adiabatically, and then it is exhausted, lowering the pres-
sure and temperature to their starting values. Because the
gas contains no fuel when it is compressed, higher com-
pression ratios can be used, producing greater thermal ef-
ficiency than other combustion engines.

It can be shown that the work performed by one Diesel
cycle:

WE:D = nR
( 1

γ − 1
(TP − TC + TE − TH) + (TP − TH)

)
Given cutoff ratio:

rc =
VH

VP

the cycle’s thermal efficiency:

ηD = 1− 1

rγ−1
v

( rγc − 1

γ(rc − 1)

)
with rv = VC/VP as in the Otto cycle.
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13.4 Carnot cycle

Though some thermodynamic cycles can be reversed
to produce refrigerators, this requires that their high-
temperature reservoirs be decreased in temperature, and
their low-temperature reservoirs increased. However, if a
perfectly reversible engine were imagined to exist, this de-
vice could operate as a heat engine or as a refrigerator just
by changing its direction of operation.

A heat engine extracts QH heat from a high-temperature
reservoir and converts it to −W work and QC waste heat.
If the engine is perfectly reversible, it can also act as a
refrigerator that uses W work to extract QC heat from
the same low-temperature reservoir, and releases QH heat
to the same high-temperature reservoir. If the engine’s
output is used to drive the refrigerator, then QH is ab-
sorbed from the high-temperature reservoir, and the same
amount is released there by the refrigerator; similarly, QC

is added to the low-temperature reservoir, from which the
same amount is then extracted. Taken as a whole, the
system changes neither reservoir.

A reversible heat engine is therefore the most efficient en-
gine possible for a given pair of reservoirs, since a more
efficient engine could produce the same amount of work
by absorbing less heat from the high-temperature reser-
voir, while exhausting less to the low-temperature one.
When combined with the refrigerator, this would decrease
total entropy, which is impossible. The same reasoning
shows that no refrigerator can be more efficient than a
perfectly reversible refrigerator. Moreover, all reversible
engines must be equally efficient.

To produce a perfectly reversible engine, it is necessary that
the engine be frictionless, so that mechanical energy can
be converted to and from thermal energy without loss. All
heat transfers must be reversible as well, but because of the
second law, transfers produced by temperature differences
cannot be reversed without also changing the reservoir tem-
peratures. This means that neither isobaric nor isochoric
processes can be used. Instead, heating and cooling must
be performed with isothermal processes, which can be re-
versed by changing the direction of the work. Adiabatic
processes must be used to convert work to and from ther-
mal energy.

An engine that meets these criteria is called a Carnot en-
gine:

p

V

TC

TH

WE

QC

QH

VP VC VEVH

At the start of the Carnot cycle, the gas has temper-
ature TC equal to that of the low-temperature reservoir.
The gas is compressed isothermally to increase its pres-
sure without changing its temperature; as this happens,
QC heat is passed to the reservoir, and WC = QC work is
performed on the gas. Next, it is compressed adiabatically
to raise its pressure again, and to increase its temperature
to that of the high-temperature reservoir, TH. The gas is
allowed to expand isothermally at this temperature, ab-
sorbing QH from the high-temperature reservoir, and per-
forming −WH = QH work on the environment. Finally, it
is allowed to expand adiabatically, performing additional
work as it drops to the starting pressure and temperature.

W = −nRT ln(V1/V0) in an isothermal process, so if VE is
the volume after the adiabatic expansion, and if VC is that
after the isothermal compression:

QC = WC = −nRTC ln
(VC

VE

)
= nRTC ln

(VE

VC

)
Similarly, if VP is the volume after the adiabatic compres-
sion, and VH is that after the isothermal expansion:

QH = −WH = nRTH ln
(VH

VP

)
TV γ−1 is constant in an adiabatic process, so:

TCV
γ−1
E = THV

γ−1
H TCV

γ−1
C = THV

γ−1
P

and:

VE = VH

(TH

TC

)1/(γ−1)

VC = VP

(TH

TC

)1/(γ−1)

Dividing VE by VC:

VE

VC

=
VH

VP

In general η = 1−QC/QH, so:

ηC = 1− QC

QH

= 1− TC ln(VE/VC)

TH ln(VH/VP)
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but VE/VC = VH/VP so:

ηC = 1− TC

TH

This gives the Carnot cycle efficiency, and the maximum
efficiency for any heat engine using reservoirs TC and TH.

It can be shown that the coefficient of performance for a
Carnot refrigerator, and thus the maximum coefficient for
any refrigerator with reservoirs TC and TH:

KC =
TC

TH − TC

14 Waves

Mechanical waves traverse a material medium. A distur-
bance moves some volume of material away from its equi-
librium position, and a restoring force pushes it back. For
water waves, the restoring force is gravity; for waves on
a string, it is the tension force along the string’s length.
Though the wave moves, and though it transfers energy
through the medium, it does not permanently displace any
part of the medium.

There are two types of mechanical wave motion. In a
transverse or shear wave, particles oscillate in a direc-
tion perpendicular to the wave’s travel, as do the waves
on a string. In a longitudinal or compression wave,
the oscillation is parallel to the travel, as in a sound wave.
Some media, like water, produce waves of both type.

A wave produces a displacement within the medium at a
given position and time. In a string, this is the perpendic-
ular displacement of a particle at some position along the
length. The particles in a fluid do not have fixed positions,
but if some volume is chosen that is large relative to the
mean free path of the particles, and small relative to the
wave motion, then displacement can be understood as the
movement of this volume.

Given a string of length L and mass m, the string’s linear
density:

µ =
m

L

As will be seen, the speed of a string wave depends entirely
on the restoring force, plus this linear density; it does not
depend on the amplitude, frequency, or shape of the wave.
If T is the tension force within the string, the speed:

v =

√
T

µ

so that v increases with T , and decreases with µ.

A one-dimensional wave can be partially represented with a
snapshot graph, which shows the displacement through-
out the medium at a single point in time:

x

y

t = 0

The wave can also be represented with a history graph,
which shows the displacement over time at a single point
within the medium:

t

y

x = 0
v = 1

A waveform that moves in one direction is called a travel-
ing wave. If the wave travels in the positive x direction,
and if its shape is constant over time, each graph will show
a reversed image of the other. The image will be scaled
horizontally according to the wave’s speed, and translated
according to the time or position at which each graph is
fixed:

t

y

x = 1
v > 1

If ∆y is the displacement change over ∆x in the snap-
shot graph, the average slope over that interval is ∆y/∆x.
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Because the graphs are reversed relative to each other, a
displacement increase in one is matched by a decrease in
the other, thus reversing the sign of the slope in the history
graph. Since ∆x = v∆t, this allows:

∆y

∆x
=

−∆y

v∆t

Note that this implies ∆x = −v∆t. Recall that x is not the
position of the wave, but rather positions along the wave.
Looking backward in the snapshot graph reveals displace-
ments that will be encountered at future points within the
history graph. This is what reverses the shape within the
two graphs.

By extension, the slopes at corresponding points in the two
graphs are related by:

∂y

∂x
= −1

v

∂y

∂t

∂y

∂t
= −v

∂y

∂x

Neither graph describes the wave throughout space and
time; though the snapshot describes the wave at every
point in space, it does so only at a particular time, and
though the history describes the wave at every point in
time, it does so only with respect to a particular position.

For a complete description, it is necessary to define the
wave’s displacement D as a function of both x and t.
If the wave shape is constant, and if it moves at constant
speed v, then each displacement moves distance vt to the
right as the time progresses from zero to t. A constant
traveling wave can therefore be seen as a function of a sin-
gle expression, x−vt, since increasing t for a given x selects
displacements that are left of that x by distance vt. When
t is fixed, the resulting function of x produces a snapshot
graph. When x is fixed, the resulting function of −vt pro-
duces a history graph. The negative sign in the history
function produces the expected change in direction, while
v produces the expected horizontal scaling.

14.1 Sinusoidal waves

The wavelength of a periodic waveform is the distance it
travels during one period:

λ = vT =
v

f

Its speed:

v = λf =
λ

T

As λ increases, greater distances are traveled during each
period, and as T decreases and f increases, those distances
are traveled more frequently.

Simple harmonic motion produces sinusoidal waves. In a
snapshot graph, the peaks of a periodic waveform are one
wavelength apart, while in a history graph, the peaks are
one period apart. To produce this type of periodicity, the
snapshot graph must be a function of x/λ, while the history
graph must be a function of t/T .

t is fixed in the snapshot graph. Given amplitude A and
starting phase ϕ0:

D(x, t = 0) = A sin
(
2π

x

λ
+ ϕ0

)
x/λ = xf/v, so as f increases, the function oscillates more
frequently; as v increases, each oscillation stretches over a
greater distance. Since:

D(x+ λ, t = 0) = A sin
(
2π

x+ λ

λ
+ ϕ0

)
= A sin

(
2π

x

λ
+ ϕ0 + 2π

)
= D(x, t = 0)

the function is periodic over λ, as expected.

Replacing x with x − vt releases the time constraint, pro-
ducing a traveling wave. Note again that vt is subtracted
because the amplitude at any x would be found vt to the
left of x if t were zero:

D(x, t) = A sin
(
2π

x− vt

λ
+ ϕ0

)
= A sin

(
2π
[x
λ
− t

T

]
+ ϕ0

)
The position x is divided by the wavelength just as the
time t is divided by the period, so this function is periodic
in space over λ, and in time over T .

Just as the angular frequency gives the number of radians
traversed per unit of time:

ω = 2πf =
2π

T

the wave number gives the radians traversed per unit of
distance:

k =
2π

λ

Because λ = 2π/k and f = ω/2π:

v = λf =
2π

k
· ω

2π
=

ω

k
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and:

ω = vk

so that radians per time is equal to distance per time mul-
tiplied by radians per distance.

Because 2π/λ = k and 2π/T = ω:

D(x, t) = A sin(kx− ωt+ ϕ0)

The phase of the wave:

ϕ = kx− ωt+ ϕ0

so the displacement function can also be written:

D(x, t) = A sinϕ

The wave speed is the rate at which a given peak or trough
travels through space. Such a point has a constant dis-
placement as it follows the wave, so it must also have a
constant phase as it follows the wave. If ϕ is constant, its
time derivative:

dϕ

dt
= k

dx

dt
− ω = 0

From this it is again seen that the speed:

v =
dx

dt
=

ω

k

At time t, the phase difference between points xA and
xB:

∆ϕ = (kxB − ωt+ ϕ0)− (kxA − ωt+ ϕ0) = k∆x

= 2π
∆x

λ

This follows from the fact that k is the number of radians
per unit of distance, while ∆x/λ is the number of cycles
within ∆x.

14.2 Wave speed in strings

The waves on a string produce transverse sinusoidal mo-
tion. If the displacement occurs in the y dimension, the
transverse velocity of a particle at position x:

vy =
∂y

∂t
= −ωA cos(kx− ωt+ ϕ0)

By extension, the acceleration:

ay =
∂vy
∂t

= −ω2A sin(kx− ωt+ ϕ0)

The acceleration is strongest at the peak or trough of each
cycle. At the peak:

ay:P = −ω2A = −v2
sk

2A

If ∆x is a very short length of string centered around the
peak of one cycle, the net force on that length:

Fy:P ≈ may:P = µ∆x · ay:P = −µ∆x · v2
sk

2A

Excepting gravity or drag, the only force affecting any seg-
ment is the tension force within the string. If the angle
between the horizontal axis and the tension vectors at ei-
ther end is θ:

θθ

y

1
2
∆x− 1

2
∆x

T⃗sT⃗s

then this force is equal to the sum of the y components of
the tension vectors:

Fy:P = 2Ts sin θ

Because ∆x is small, θ is also small. One of the small angle
approximations allows sinu ≈ tanu when u ≪ 1, so:

Fy:P ≈ 2Ts tan θ

If the peak is centered around the y-axis, then its displace-
ment is greatest there, and:

yP = A cos(kx)

tan θ gives the slope at 1
2
∆x, yet the slope is also equal to:

dyP
dx

= −kA sin(kx)

so that:

tan θ = −kA sin
(k∆x

2

)
Because ∆x is small, k∆x/2 is also small. Another small
angle approximation allows sinu ≈ u when u ≪ 1, so:

tan θ ≈ −k2A∆x

2

Therefore:

Fy:P = −k2A∆x · Ts

Equating this with the earlier result for Fy:P gives:

−µ∆x · v2
sk

2A = −k2A∆x · Ts
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so that:

µv2
s = Ts and vs =

√
Ts

µ

This tells the speed for a sinusoidal wave. Because any
waveform can be decomposed into sinusoids, and because
the speed depends only on the string tension and the linear
density, all components have the same speed. This makes
the result valid for a string waveform of any shape.

14.3 Speed of sound

Sound produces longitudinal waves within a fluid. Assume
that a wave pulse is traveling from right to left along the
x-axis through a flow tube with cross-sectional area A, and
that it approaches a tube section of length ∆x. If the refer-
ence frame is centered on the pulse, then the section is seen
to be moving at speed v while the pulse remains station-
ary. If the pressure within the tube is p, and if the pressure
inside the pulse is p + ∆p, then, as the section meets the
pulse, force:

F = −∆pA

is exerted on the section. The section’s volume:

V = A ·∆x = A · v∆t

with ∆t being the time for the section to cross any point
before the pulse. If the fluid has density ρ at equilibrium,
the section’s mass:

m = ρAv∆t

The force will produce acceleration ∆v that slows the sec-
tion. Because F = ma:

−∆pA = ρAv∆t · ∆v

∆t
−∆p = ρv∆v

so that:

ρv = −∆p

∆v
and ρv2 = − ∆p

∆v/v

If the tube is divided into a number of like sections, each
will contain the same mass of fluid. Though the wave dis-
turbs the fluid, it does not permanently displace it, so, in
the aggregate, and relative to the pulse, it must travel at
a constant mass flow rate:

v0ρ0A = v1ρ1A

As the force accelerates the section, it also compresses
it, producing volume change ∆V . The original volume
V = Av∆t. Assuming:

∆V = A∆v∆t

relates the acceleration to the volume change in a way that
maintains the mass flow rate. Therefore:

∆V

V
=

A∆t ·∆v

A∆t · v
=

∆v

v

and:

ρv2 = − ∆p

∆V/V
= B

B is the fluid’s bulk modulus, which in this case relates
the pressure difference within the pulse to the proportional
decrease in the section volume. Any compression or rar-
efaction produced by the pulse is assumed to be adiabatic.

As a result, the speed of sound in a fluid:

v =

√
B

ρ

This is analogous to the finding for wave speed in a string,
and for simple harmonic motion in general, with B or Ts

representing the restoring force that pushes the system to-
ward its equilibrium, and ρ or µ representing the system’s
ability to store mechanical energy, which carries it past that
equilibrium. This result also applies to longitudinal sound
waves in a solid. Sound can produce transverse waves in
solids as well, but those move at a different speed.

The bulk modulus of a gas varies with temperature. pV γ

is constant in an adiabatic ideal gas process, so:

p =
k

V γ

for some constant k. The derivative of pressure with re-
spect to volume:

dp

dV
= −γkV −γ−1

The bulk modulus:

B = −V
∆p

∆V
= −V

dp

dV

so that:

B = −V · −γkV −γ−1 = γ
k

V γ
= γp
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If n is the number of moles in the volume, and M the molar
mass, then:

ρ =
nM

V

Therefore:

v =

√
B

ρ
=

√
γp · V

nM

Because pV = nRT :

v =

√
γRT

M

so that the speed of sound in an ideal gas increases with
temperature, and decreases with the molar mass of the gas.

14.4 Wave power and intensity

A wave that spreads outward from a point within a plane
is called a circular wave. A wave that spreads outward
from a point in space is called a spherical wave. Wave
fronts are the regions at which the wave crests. These
appear as a set of concentric circles in a circular wave, or
as concentric spheres in a spherical wave, each one wave-
length apart. At a sufficiently great distance from the wave
source, wave fronts resemble parallel lines or planes. In a
three-dimensional wave, these are known as plane waves.
True plane waves do not occur in nature, but they are use-
ful as a simple model.

Because plane waves are identical throughout two of their
dimensions, they are described adequately by the basic dis-
placement function D(x, t). To characterize a circular or
spherical wave, it is necessary to replace the x variable with
r, the straight-line distance to the source. Unlike the wave
fronts in a one-dimensional wave (which are points) the
fronts in a multidimensional wave increase in size as r in-
creases. Because energy is conserved, the amplitude must
decrease over distance, so that A becomes a function of r:

D(r, t) = A(r) sin(kr − ωt+ ϕ0)

A wave’s power P is the rate at which it transfers energy;
its intensity I is its power per unit of area. If a three-
dimensional wave has surface area a at some distance from
the source, the intensity over that surface:

I =
P

a

Intensity is measured in W/m2. If the distance is r, the
intensity of a spherical wave:

I =
P

4πr2

Because IB/IA = r2A/r
2
B, the ratio of the intensities at two

distances can be found even if the power is unknown.

A mechanical wave pulse tranfers energy from one part of
the medium to another. The particles in the wave oscillate
transversely, longitudinally, or both, but within either axis,
the motion follows a waveform that can be decomposed into
one or more sinusoids. Each sinusoidal path is an example
of simple harmonic motion. As already demonstrated, the
mechanical energy of a particle moving this way E = 1

2
kA2,

with k being the spring constant. The wave’s power is a
measure of the rate at which this energy is transferred, so,
in any wave, power and intensity vary with the square of
the amplitude.

More specifically, in a string carrying a transverse sinu-
soidal wave, the transverse velocity of any short segment:

vy =
∂y

∂t
= −ωA cos(kx− ωt+ ϕ0)

This velocity is momentarily zero at each peak or trough,
and it is greatest where the string crosses the x-axis. If the
segment spans length dx when projected onto the x-axis,
it can be seen to approximate the unstretched, equilibrium
length at every peak or trough, while being stretched to its
greatest extent where it crosses the axis:

dx

dx

x

This shows that the elastic potential energy is also zero at
peaks and troughs, and that it reaches its maximum value
near the axis.

The total mass of the segment varies with its length, so
that dm = µdx for linear density µ. Therefore, the kinetic
energy in the segment:

dK =
1

2
dm · v2

y

=
1

2
µdx · ω2A2 cos2(kx− ωt+ ϕ0)
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Dividing by dt gives the rate at which kinetic energy enters
and leaves the segment. Because dx/dt is the wave speed
v:

dK

dt
=

1

2
µvω2A2 cos2(kx− ωt+ ϕ0)

Over a whole number of cycles, the average of the square
of cosine is one-half. Therefore:(dK

dt

)
=

1

4
µvω2A2

The potential energy that passes through the segment over
a whole number of cycles must equal the kinetic energy, so
that the average power :

P = 2
(dK
dt

)
=

1

2
µvω2A2

Note that the instantaneous power varies with the phase
of the wave.

As will be seen, the string’s impedance Z =
√
µT . Because

v =
√
T/µ, µv = Z, allowing the power to be expressed in

terms of impedance:

P =
1

2
Zω2A2

14.5 Impedance

When a traveling wave encounters a boundary in the
medium, it may be reflected, or part of the wave’s energy
may be passed through the boundary, leaving the rest to be
reflected. Depending on the type of the wave, the reflection
may also be inverted.

If a string wave meets a perfectly rigid boundary, it will be
reflected. The fixed end of the string does not move, so any
force exerted by the string must be opposed by an equal
and opposite force. If the wave causes the string to pull up,
this force will pull down on the string, and the reflection
will be inverted. As will be seen, reflections are produced
by changes in impedance, which describes a medium’s re-
sistance to harmonic motion; in this case, the wave travel-
ing the low-impedance string encounters an infinitely high
impedance at the rigid boundary, and is completely re-
flected. The wave will also be reflected if the region past
the boundary has a lower impedance. This can be under-
stood by imagining that the string connects to a massless,
frictionless ring that follows a pole in the transverse direc-
tion. Beyond the ring is a massless string. The ring travels
freely, so nothing resists the transverse motion; however,
as the string pulls in the longitudinal direction, an equal

and opposite force pulls back, reflecting the wave from the
zero-impedance region without inverting it.

Sound is also reflected by impedance changes. A flute can
be open at one or both ends. When the sound inside a flute
strikes a closed end, the high-pressure region at each peak
presses against the rigid boundary, producing an equal and
opposite force that reflects the wave. Therefore, although
the material at the closed end has a higher impedance,
the wave is not inverted. Sound is also reflected at the
open end, where the impedance decreases. Impedance is
partly determined by the medium’s bulk modulus, and
although the air inside a flute has the same modulus as
that outside, it is surrounded by a rigid tube that pre-
vents high-pressure regions from expanding (except axi-
ally) and that similarly impedes the contraction of low-
pressure regions. This causes air inside the tube to re-
sist pressure changes relative to the same air outside, thus
increasing the impedance. When a high-pressure region
is created just outside the flute, it disperses more quickly
than it can inside; this creates a low-pressure region that
passes back into the flute, reflecting and inverting the wave.
So, although string waves are inverted when reflected by
impedance increases, sound waves are inverted when re-
flected by impedance decreases.

Impedance can be defined more precisely by considering
the transverse force necessary to drive a wave from one
end of a string. If T is the string’s tension, and if θ is the
angle between the string end and the x-axis, the force must
equal and oppose the transverse tension component:

Ty = T sin θ

If the wave amplitude is very small, θ will be small as well.
The small angle approximations allow sinu ≈ tanu when
u ≪ 1, so that:

Ty ≈ T tan θ

Because tan θ is the slope at this point:

Ty = T
∂y

∂x

However, as already seen:

∂y

∂x
= −1

v

∂y

∂t

with ∂y/∂t being the transverse velocity vy. Therefore:

Ty = −T

v
vy
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Because it varies linearly with vy, and because it acts to
oppose that motion, Ty is seen to be a damping force. The
impedance:

Z ≡ T

v

is the damping constant for that force:

Ty = −Zvy

As will be seen, in addition to defining the force neces-
sary to drive the wave, this defines the force necessary to
absorb the wave without producing a reflection. Because
v =

√
T/µ, it is also true that:

Z =
√
µT

To understand the effect of an impedance change, consider
the behavior of the string wave at a boundary. The dis-
placement of a traveling wave can be expressed as a func-
tion of its phase, x− vt, so that:

D(x, t) = f(x− vt)

If g(s) = f(−v · s), then it can also be expressed as:

D(x, t) = g
(
t− x

v

)
If a source wave gS approaches a boundary from the left,
then the source and the reflection gR will superpose, while
the transmitted wave gT continues on to the right. The
wave speed is determined entirely by the medium, so the
reflection will have the same speed as the source, but an
opposite direction:

DS(x, t) = gS

(
t− x

vS

)
DR(x, t) = gR

(
t+

x

vS

)
Therefore, the combined displacement on the left :

DL(x, t) = gS

(
t− x

vS

)
+ gR

(
t+

x

vS

)
while that on the right :

DR(x, t) = gT

(
t− x

vT

)
Assume the boundary is at x = 0. The string is continuous
at all points, so DL(0, t) = DR(0, t) and:

gS(t) + gR(t) = gT(t)

Note that – by replacing x with zero – a contingent state-
ment DL(x, t) = DR(x, t) that is true only where x = 0 is
transformed into a general statement that is true for any
argument t. This will be used later to make more general
claims about the functions, at points where x is not zero.

The point on the boundary has negligible mass; the net
transverse force must therefore be zero, or the point would
quickly move to a different position that does balance the
forces. Assuming θL is the angle between the x-axis and
the tension T⃗L on the left, and θR the corresponding angle
on the right :

T⃗L

T⃗R

θR

θL

the transverse tension components must be equal:

TL sin θL = TR sin θR

If the wave amplitude is again assumed to be very small,
the transverse tension can be related to each slope, so that:

TL

∂DL(x, t)

∂x

∣∣∣∣
x=0

= TR

∂DR(x, t)

∂x

∣∣∣∣
x=0

Differentiating and replacing x with zero again:

−TL

vS
g′
S(t) +

TL

vS
g′
R(t) = −TR

vT
g′
T(t)

−ZL · g′
S(t) + ZL · g′

R(t) = −ZR · g′
T(t)

After negating both sides, and after assuming that the dis-
placements (and therefore the integration constants) are
zero when t = 0, integration produces:

ZL · gS(t)− ZL · gR(t) = ZR · gT(t)

Combining this with the earlier result leads to:

gR(t) = kR · gS(t) gT(t) = kT · gS(t)

with the reflection and transmission coefficients:

kR =
ZL − ZR

ZL + ZR

kT =
2ZL

ZL + ZR

determining the amplitudes of the reflected and transmit-
ted waves in this string. Note that 1 + kR = kT.

Recall that after a perfectly elastic collision, the speed of
objects A and B:

vA:1 =
mA −mB

mA +mB

vA:0 vB:1 =
2mA

mA +mB

vA:0

The reflection and transmission coefficients take the same
form, and in both cases, the relations conserve energy. The
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kinetic energy of an object, K = 1
2
mv2, while the average

power of a wave:

P =
1

2
Zω2A2

In the wave, impedance takes the place of mass, while am-
plitude takes that of velocity. The range of outcomes is
also equivalent to those of an elastic collision:

� If ZL ≪ ZR, the reflection retains most of the source
wave’s amplitude, while the transmitted wave is very
small;

� If ZL < ZR, the reflected and transmitted waves are
both smaller than the source;

� If ZL = ZR, there is no reflection, and the transmitted
wave is identical to the source;

� If ZL > ZR, the reflection is smaller than the source,
while the transmitted wave is larger ;

� If ZL ≫ ZR, the reflection is almost as large as the
source, while the transmitted wave has nearly twice
the amplitude.

Note that when ZL < ZR, kR is negative, producing an
inverted reflection.

Because gR(t) = kR ·gS(t) and gT(t) = kT ·gS(t) are general
claims about the gS, gR, and gT functions, t can be replaced
by any argument, including t+ x/vS. This works because
the functions do nothing more than map the wave’s phase
(here represented by t) to its displacement. t + x/vS re-
lates the change in phase to the change in position, and as
long as it does that correctly, the phase and displacement
relationships between gS, gR, and gT continue to hold. As
a result:

gR

(
t+

x

vS

)
= kR · gS

(
t+

x

vS

)
Recalling that DR(x, t) = gR(t + x/vS) and DS(x, t) =
gS(t− x/vS):

DR(x, t) = kR ·DS(−x, t)

When the boundary is placed on the y-axis, the reflection’s
displacement at point −x is some fraction of the displace-
ment the source would have if it reached point x.

A similar operation applies to the gT equation. Replacing
t with t− x/vT produces:

gT

(
t− x

vt

)
= kT · gS

(
t− x

vt

)

However, this expression of gS does not match DS(x, t) =
gS(t− x/vS), which uses vS. Therefore:

gT

(
t− x

vt

)
= kT · gS

(
t− (vS/vT)x

vS

)
so that:

DT(x, t) = kT ·DS

( vS
vT

x, t
)

The vS/vT term shows the speed of the transmitted wave
to be vT/vS times that of the source, since displacements
that would occur at vS/vT · x instead occur at x. This is
to be expected, since vT/vS · vS = vT.

14.6 Light

Light travels at different speeds in different materials. If
c is the speed of light in a vacuum, and if v is its speed
within some material, then the index of refraction or
refractive index for that material:

n =
c

v

This is the reciprocal of the relative speed of light within
the material. As will be seen, the refractive index also af-
fects the amount by which light bends as it passes from
one medium to another. The refractive index of a vacuum
is one, and that of air is very close to one. Liquids and
solids have greater refraction indices than gases, so light
travels more slowly in those materials. Diamond has the
very high refractive index of 2.41. A material’s refractive
index varies slightly for different colors of light. The index
is higher for shorter wavelengths like violet, so those colors
travel more slowly through the material.

The wavelength of visible light varies from 400nm to
700nm. Because its speed changes as light enters differ-
ent materials, and because v = λf , either the wavelength
or the frequency must change. In a vacuum, a given wave
may oscillate at frequency f . As the wave enters a ma-
terial, this oscillation induces a response that propagates
the wave. Because the stimulus is periodic at frequency
f , the response must be periodic at that same rate, so the
frequency must be the same. Only the wavelength changes.

Inside the material, λM = v/f . It is also true that v = c/n,
so:

λM =
c

fn

However, the wavelength in a vacuum λV = c/f , so:

λM =
λV

n
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As the refractive index increases, the speed and the wave-
length decrease.

14.7 Doppler Effect

The center of a wave front in a circular or spherical wave is
the point at which the front was generated. When the
source and the medium are both stationary, concentric
fronts are produced. When the source moves, the fronts
are spaced unevenly, creating the Doppler effect:

Note that the speed of the source does not add to that of
the wave. A mechanical wave’s speed is determined by the
bulk modulus and density of the medium, as always.

A stationary source produces wave fronts that are one
wavelength apart. If the medium is stationary, and if the
source approaches an observer at speed vS, then, in the pe-
riod T necessary for a mechanical wave front to travel λ
from its origin, the source has moved vST closer to the ob-
server. The distance between the last front and the next,
as measured between the source and the observer:

λ′ = λ− vST

Because λ = v/f and T = 1/f :

v

f ′ =
v

f
− vS

f

vf = (v − vS)f
′

so that the observed frequency:

f ′ =
v

v − vS
f =

1

1− vS/v
f

If the observer moves at speed vO toward a stationary
source, the wave fronts will remain concentric, but their
speed relative to the observer will increase to v′ = v + vO.
Therefore:

f ′ =
v + vO

λ
=

v + vO
v

f =
(
1 +

vO
v

)
f

If the medium remains stationary while the source and the
observer move toward each other, then, because v = λf :

v + vO = (λ− vST )f
′

Following from this:

f ′ =
v + vO
λ− vST

=
v + vO

v/f − vS/f
=

v + vO
v − vS

f

If the source moves away from the observer, or if the ob-
server moves away from the source, the sign of vS or vO is
reversed.

The Doppler effect is also observed in electromagnetic
waves; however, these waves have no medium, and the
speed of light is constant relative to any reference frame.
If a light source approaches some observer, Einstein’s the-
ory of relatively can be used to show that the observed
wavelength:

λ′
c =

√
c− vS
c+ vS

=

√
1− vS/c

1 + vS/c

14.8 Standing waves

A system is linear if it exhibits both homogeneity and
additivity. If the system is modeled by a function F (x),
homogeneity requires that:

F (a · x) = a · F (x)

while additivity requires:

F (xA + xB) = F (xA) + F (xB)

In physics, these results are known as the superposition
principle. When applied to overlapping waves, the prin-
ciple implies that the displacement at some point is equal
to the sum of the displacements that would be produced
by each wave individually.

Assume that two linear waves with the same amplitude, fre-
quency, and wavelength are traveling in opposite directions.
If their phase constants are both zero, the displacement of
their superposition:

D(x, t) = a sin(kx− ωt) + a sin(kx+ ωt)

Because sin(α± β) = sinα cosβ ± cosα sinβ:

D(x, t) = a
[
(sin kx)(cosωt)− (cos kx)(sinωt)

]
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+ a
[
(sin kx)(cosωt) + (cos kx)(sinωt)

]
= 2a(sin kx)(cosωt)

Though the displacement is periodic over x and t, it is not
a function of x− vt, so it is not a traveling wave. Instead,
the superposition produces a standing wave. Where x
and t are joined to produce the single phase of a traveling
wave, two separate phases define the standing wave, one in
space, and one in time. The wave’s general shape in space
is defined by the amplitude function:

A(x) = 2a sin kx

so that:

D(x, t) = A(x) cosωt

A simple traveling wave appears as a sinusoid that moves
along the x-axis. By contrast, a simple standing wave
appears as a stationary sinusoid that varies over time in
amplitude. As cosωt changes in magnitude and sign, the
wave drops from its maximum amplitude of 2a, momentar-
ily disappears, then reappears with its peaks and troughs
reversed, these growing until the amplitude reaches its min-
imum value of −2a. The points where A(x) = 0 are called
nodes, and these points never move, even transversely.
Nodes occur where kx = mπ for any integer m. Because
k = 2π/λ:

x = m
π

k
= m

λ

2

This places a node at every half-multiple of the wavelength.
The points halfway between the nodes are called antin-
odes, and they produce the greatest displacement.

If a string is fixed at both ends, any disturbance will create
reflections with the same frequency and wavelength as the
source. The fixed points impose boundary conditions
that limit the displacement at those points. If the first
point is placed at the origin, and if the string has length L:

D(0, t) = 0

D(L, t) = 0

To meet the second condition at all times, the amplitude
function must produce a node at the end of the string:

2a sin kL = 0

Therefore:

kL =
2π

λ
L = nπ

for some integer n > 0. This allows wavelengths:

λn =
2L

n

and frequencies:

fn =
v

λn

= n
v

2L

The lowest frequency is called the fundamental fre-
quency:

f1 =
v

2L

while the frequencies in general are called harmonics:

fn = nf1

Note that the fundamental is counted as one of the har-
monics, so the ‘second’ harmonic is 2f1, not 3f1.

The standing wave corresponding to a given n is called a
normal mode of the string. For each such mode, in a
string that is fixed at both ends, n gives the number of
antinodes. Note that the fundamental mode produces only
one antinode, representing half a wavelength.

If the string were open at one end, there would be nothing
to oppose transverse motion at that point. In the idealized
example, where a frictionless ring travels a transverse pole,
any non-zero slope would produce a transverse force that
immediately moved the end to an equilibrium position. Be-
cause the peaks and troughs of the standing wave are the
only points where the slope is zero, they are the only points
where the wave displacement would be stable. Therefore,
an open end will produce an antinode rather than a node.

Sound produces variations in displacement and pressure,
with the phase of the pressure amplitude π/2 behind that of
the displacement. Pressure variations are therefore shifted
forward in the snapshot graph:

Pmax PminPmin

Dmax DminD0 D0 D0

P0 P0

When discussing sound, the word ‘amplitude’ can apply
to the displacement or the pressure of the wave. When
it is associated with displacement, results equivalent to a
string wave are obtained. The closed end of a flute pro-
duces a displacement node, because the air cannot vibrate
longitudinally through the rigid boundary, and a pressure
antinode, as the boundary alternately compresses and rar-
efies air that would otherwise have been displaced. Just as
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the open string end cannot support a non-zero transverse
tension, the open flute end cannot maintain a region that
varies from the air pressure outside the flute. The only
points in the wave that are not compressed or rarefied are
the displacement antinodes, so an antinode will be found
at the open end.

If a string or flute is open at both ends, the node at each end
will be replaced with an antinode. In other respects, the
system will match one that is closed at both ends, produc-
ing wavelengths λn = 2L/n and frequencies fn = nv/2L
for every integer n > 0. Each mode will contain n half-
wavelengths.

If only one end is open, the fundamental mode will contain
a node and an antinode, these spanning just one quarter
of a wavelength. Doubling this frequency would produce
a mode with two nodes, however, which is impossible for
this system, so only odd-numbered modes will be supported.
These will produce wavelengths λn = 4L/n and frequencies
fn = nv/4L for odd n. Each mode will contain a combined
number of n+ 1 nodes and antinodes.

14.9 Interference

Interference occurs when waves overlap. A standing wave
is a special form of interference produced by two same-
frequency waves traveling in opposite directions. If two
waves with the same amplitude and frequency travel in the
same direction, and if their sources are xA and xB distant
from some point, their displacements at that point:

DA(xA, t) = a sin(kxA − ωt+ ϕ0:A)

DB(xB, t) = a sin(kxB − ωt+ ϕ0:B)

The distance between the sources:

∆x = xB − xA

is called the path-length difference. The phase differ-
ence includes the phase change produced by that length,
plus the difference in starting phases:

∆ϕ = (kxB − ωt+ ϕ0:B)− (kxA − ωt+ ϕ0:A)

= k∆x+∆ϕ0

The waves’ superposition:

D = DA +DB = a sinϕA + a sinϕB

One of the sum-to-product identities allows:

sinα+ sinβ = 2 cos
(α− β

2

)
sin
(α+ β

2

)

so that:

D = a · 2 cos
[
−(k∆x+∆ϕ0)

2

]

· sin
[
(kxA + kxB)− 2ωt+ (ϕ0:A + ϕ0:B)

2

]
=
(
2a cos

∆ϕ

2

)
sin
(
kxavg − ωt+ (ϕ0)avg

)
after exploiting the fact that cos−α = cosα.

The result is a sinusoid of the same frequency, with path-
length and starting phases that are halfway between those
of the sources. Unlike the standing wave, this is a function
of x− vt, so it is a traveling wave. Its amplitude:

A =

∣∣∣∣2a cos ∆ϕ

2

∣∣∣∣
is greatest when the phase difference is an even multiple of
π. It is zero where the difference is an odd multiple of π.

If two waves with different frequencies have the same am-
plitude and a starting phase of π, their displacements at
x = 0:

DC(0, t) = a sin(−ωCt+ π)

DD(0, t) = a sin(−ωDt+ π)

Because sin(−α+ π) = sin(α), their superposition:

D = DC +DD = a(sinωCt+ sinωDt)

After applying the same sum-to-product identity:

D = 2a cos

[
1

2
(ωC − ωD)t

]
sin

[
1

2
(ωC + ωD)t

]
If ωC and ωD are close, ωmod = 1

2
(ωC − ωD) will be small,

and D will be perceived as a single amplitude-modulated
frequency halfway between the source frequencies:

D =
(
2a cos(ωmodt)

)
sin(ωavgt)

This pattern is called a beat. Because the amplitude
crosses zero twice as it varies from −2a to 2a, the beat
frequency is equal to twice the modulation frequency.

Despite what an observer may see or hear, it is equally
valid to understand D as a low frequency ωmod that is mod-
ulated at a very fast rate ωavg. Any product of two signals
is technically a form of ring modulation, and the sum and
difference of the modulated frequencies:

ωmod + ωavg = ωC |ωmod − ωavg| = ωD

produces the source frequencies, as expected.
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15 Wave optics

An obstacle that blocks part of a wave does not cast a
clear shadow; instead, the wave fronts curve after they pass
its edges to fill the shadowed region. This effect is called
diffraction.

15.1 Double-slit experiment

The double-slit experiment uses diffraction to demonstrate
the wavelike nature of light. Two slits approximately
100µm wide are cut into a plate some 500µm apart. Even
if the wave fronts are flat when they reach the plate, they
emerge as two sets of curved fronts, as though each slit
were a new source. These overlap to produce an interfer-
ence fringe, containing alternating bands of constructive
and destructive interference.

Given a screen that is parallel to the plate at horizontal
distance L, distances rA and rB will separate any screen
point P from the slits. Assume that the y-axis origin is
exactly between the slits. If a line is drawn from this point
to P , and if the angle from the horizontal axis to the line
is θ:

h

rA

rB θ L
0

P

then P will have vertical position:

h = L tan θ

If the light source is placed where y = 0, the same wave
fronts will enter each slit at the same time, and the waves
that exit will have the same phase. Each of these waves will
cover every point on the screen, but perfect constructive in-
terference will occur at P only if the path-length difference
is an integer multiple of the wavelength, so that:

∆r = rB − rA = mλ

for integer m. If an arc with radius rA is centered on P , it
will cross through the first slit and near the second, with
the distance to the second slit being ∆r. If vertical distance
d between the slits is very small relative to L, this arc will
form an essentially straight line. Because d is small, dis-
tances rA and rB can be assumed to roughly parallel the

line between the midpoint and P , so that both vary by
angle θ from the horizontal axis:

rA

rB

θ

θ

d

This makes the angle from the plate to the arc line θ as well.
Naturally, rA and rB are not parallel, but this assumption
allows their length difference to be estimated:

∆r ≈ d sin θ

so that constructive interference occurs where:

d sin θm = mλ

If P is near the midpoint, θ will be small, allowing sin θm ≈
θm and:

θm ≈ m
λ

d

Another small angle approximation gives tan θm ≈ θm, so
the vertical position of this point on the screen:

hm = L tan θm ≈ Lθm = m
λL

d

The midpoint on the screen is equidistant from each slit.
A bright band appears at this point, and at evenly-spaced
points above and below it.

The intensity of a wave varies with the square of its ampli-
tude. If I1 is the intensity at a point on the screen when
only one slit is open, and if a is the amplitude of this light
when it reaches the screen, then I1 = ka2 for some con-
stant k. In general, when two waves of equal frequency
and amplitude are superposed, their combined amplitude:

A =

∣∣∣∣2a cos ∆ϕ

2

∣∣∣∣
The phase is the same for both waves as they emerge from
the slits, so:

∆ϕ =
2π

λ
∆r =

2π

λ
d sin θ ≈ 2π

λ
d tan θ =

2π

λ
d · h

L

producing:

A =

∣∣∣∣2a cos( πdλLh
)∣∣∣∣
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for position h on the screen. The intensity of this superpo-
sition:

I2 = k · 4a2 cos2
( πd
λL

h
)

Because I1 = ka2, this can be related to the single-slit in-
tensity:

I2 = 4I1 cos
2
( πd
λL

h
)

The intensity of the interference fringe therefore varies from
zero to four times that produced by a single slit.

15.2 Diffraction gratings

Diffraction gratings bend different colors of light in dif-
ferent directions, somewhat like a prism. They can be im-
plemented as reflection or transmission gratings.

A reflection grating is created by engraving thousands
of thin, parallel grooves in the surface of a mirror. As
light is reflected, each ridge acts as a separate light source,
producing an interference pattern that reinforces different
wavelengths at different angles.

A transmission grating produces the same type of inter-
ference, but it is made by scoring thousands of thin slits
(typically 1000 per millimeter) within a transparent ma-
terial. If a light source is aligned with the center of the
grating, and if it is distant enough to produce something
like plane waves, the light emerging from each slit will have
the same phase, and an effect much like the double slit ex-
periment will result.

As before, if two adjacent slits are separated by vertical
distance d, and if they vary in distance to P by ∆r, the
paths to the screen can be assumed to be parallel, allowing
∆r to be estimated as d sin θ. The same reasoning applies
to all the slits above and below these two. Only at one
point is the angle exactly θ, and with each iteration, the
slits are d farther from that point. However, if the screen
is sufficiently far from the grating, the accumulated error
will remain small for some distance along the grating.

Constructive interference will occur where ∆r = mλ, so
that:

sin θm = m
λ

d

Before, each angle was assumed to be very small, so that
sin θm ≈ θm. Because d in the grating is much smaller rela-
tive to λ, the angles are relatively large, and the small angle

approximations cannot be used. The vertical distance to
each point of constructive interference:

hm = L tan θm

The integer m is known as the order of the diffraction.

If one slit allows a straight transit from the source to the
screen, the slits immediately adjacent can be assumed to be
parallel and equidistant, and so on, so that many slits pro-
duce phase-consistent paths to the center. Therefore, the
middle of the screen, where m = 0, is a point of construc-
tive interference for any wavelength. When a combination
of frequencies is directed at the grating, this point displays
a bright band that contains each of these components. The
same frequencies are scattered at different angles above and
below, producing a symmetrical pattern that can be used
to identify components within the source.

If there are n slits, and if the amplitude at the screen pro-
duced by just one of these is a, then the combined ampli-
tude will vary from zero to na. Intensity varies with the
square of the amplitude, so if I1 is the intensity produced
by a single slit, the combined intensity must vary from zero
to n2I1. Because I gives the power per unit area, and be-
cause energy is conserved, the total area of the bands must
decrease as the intensity grows. If it were possible for the
waves to combine without interfering, they would cover the
screen evenly, and their intensity would be nI1 rather than
n2I1. The width of the bands therefore varies with 1/n. As
the number of slits increases, the bands grow brighter and
thinner.

15.3 Single-slit diffraction

Huygens’ principle is a simple geometric model that pre-
dicts diffraction effects in a wave. In this model, each
point on a wave front produces a hemispherical wavelet
that expands only in the ‘forward’ direction. The next
wave front takes the shape of a surface that is tangent to
all the wavelets.

Light passing through a single slit also produces an inter-
ference pattern. If the slit has width d, any point along its
length can be associated with another point, also within
the slit, that is d/2 away:
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θ

θ

r

r′
d/2

d

Each point within some pair generates a hemispherical
wavelet that covers the entire screen. For a given point
P , one wavelet travels distance r, while the other travels
r′. If the angle from the center of the slit to P is θ, and
if the paths are again assumed to be parallel, the length
difference:

∆r ≈ d

2
sin θ

If this value happens to be λ/2, the waves in each pair will
destructively interfere. Because every path from the slit to
P is part of a similar pair, that point will be completely
dark.

This approach can be extended to any pair distance that
divides the slit into an even number of lengths. Given pair
distance d/2n, for non-zero integer n, destructive interfer-
ence occurs where:

d

2n
sin θn =

λ

2

sin θn = n
λ

d

When the slit is small, θn must be larger to produce the nec-
essary path-length difference, which is why smaller aper-
tures produce more pronounced diffraction effects. θn also
increases as larger n values divide the slit into smaller frac-
tions. This places higher-order minima at the outside of
the pattern. Note also that, when the wavelength is greater
than the slit width, no non-zero integer n can satisfy this
equation, and the difference is never great enough to pro-
duce perfect destructive interference.

If λ is small relative to d, θ will be small as well, allowing:

θn ≈ n
λ

d

Surprisingly, this resembles the findings for constructive
interference in the double-slit experiment. The difference
results from the geometry of the slits and the way that
d is defined. In both cases, different point distances along
the slit produce different path lengths, which in turn create
varying phase relationships between the paths. In fact, any
phase relationship can be produced if the points along the

slit are chosen freely. In the double slit, d gives the distance
between the two centers; this produces a whole-wavelength
difference, and constructive interference results. In the sin-
gle slit, d gives the distance between the two edges, and
even if wavelet sources were negligible in size, these would
be the only two points that were d apart, so perfect con-
structive interference does not occur. In the single slit, the
d/2n distances produce destructive interference. The same
distances can be found in the double slit, but at least one
point in each distance pair is blocked by the material be-
tween the slits, so perfect destructive interference does not
occur.

If tan θ ≈ θ, the position on the screen:

yn = n
λL

d

The central maximum spans the distance between the first-
order minima at ±λL/d, so its width on the screen is
2λL/d. This distance grows as the wavelength increases
relative to the size of the slit, so narrower slits produce
wider patterns. Because light wavelengths are very small,
the interference fringes produced by objects of mundane
scale are too narrow to be seen, and light passing through
even a small hole produces a sharp-edged beam. The hole
must be as small as one micron to produce strong light
diffraction that fills the space beyond the barrier, the way
sound fills a room.

Light passing through a circular aperture creates Airy’s
disk, a round central maximum surrounded by concentric
circles. Analyzing this interference pattern is more diffi-
cult, but it can be shown that the angle of the first-order
minimum:

sin θ1 ≈ 1.22
λ

d

This gives the central maximum a diameter of approxi-
mately 2.44λL/d.

15.4 Interferometry

Interferometers use interference to make measurements.
In theMichelson interferometer, light is passed through
a beam splitter that divides the light into two orthogonal
beams. Each beam encounters a mirror that returns it to
the splitter, where the beams divide again. Some of the
light is lost, while the rest is joined into a single beam that
is intercepted by a detector:
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LA

LB

Because the beams are generated by the same light source,
they start with the same wavelength and phase. They
travel the same distance from the source to the splitter,
and later from the splitter to the detector, but they travel
different distances to and from the mirrors. This creates a
phase difference that produces interference at the detector.
Depending on the precise geometry of the mirrors, the in-
terference could appear as a pattern of concentric rings or
as parallel bands.

If the distance from the splitter to the first mirror is LA,
and that to the second LB, then the path-length difference:

∆r = 2LB − 2LA

Constructive interference will occur at the center of the
pattern when ∆r is an integer multiple of the wavelength,
so that:

LB − LA = m
λ

2

for integer m.

Reduction gears can be used to make precise changes to
one of the distances. As this is done, alternately construc-
tive and destructive interference will occur at the detector,
so that:

C =
2∆L

λ

cycles are observed as the distance changes by ∆L. This
can be used to measure the wavelength very precisely, or
a known wavelength can be used to measure the change in
distance.

This type of interferometer can also be used to measure
the refractive index of a gas. If a container of length d
is interposed between the splitter and one of the mirrors,
one beam will travel distance 2d through the container as
it passes from the splitter to the mirror and back. If the
container is evacuated, and if the wavelength of the light
in vacuum is λV, then:

mV =
2d

λV

wavelengths will be spanned. If gas is slowly added to the
container, the refractive index will increase, and the light
within will decrease in wavelength. When the gas reaches
the target pressure, its refractive index will be n, and the
light’s wavelength λM will equal λV/n, so that:

mM = n
2d

λV

wavelengths span the container. Therefore:

∆m = mM −mV = (n− 1)
2d

λV

Each increment to ∆m represents one wavelength differ-
ence relative to the count in the vacuum, this producing
one complete cycle of constructive and destructive inter-
ference. Counting these cycles at the detector establishes
∆m, so that the final refractive index:

n = 1 +
λV

2d
∆m

16 Ray optics

The ray model presents light as a collection of rays, each
moving in a straight line away from the source. When it
interacts with matter, a ray may be scattered, causing it
to change direction, or absorbed, so that it stops; otherwise
it will continue in the same direction indefinitely. When
a ray encounters a boundary between materials, it may be
reflected, or it may be refracted, so that it bends in a new
direction. This model is used at larger scales, where any
apertures traversed by the light are much larger than the
light’s wavelength. At smaller scales, with apertures of one
millimeter or less, diffraction effects must be considered.

The ray model can be used to explain the camera obscura,
a darkened room with a small aperture that is open to the
outside. Rays that emanate from objects outside the room
pass through the aperture and illuminate the far wall, pro-
ducing an image. An object near the ground produces rays
that travel up to cross the aperture, and these continue at
this angle until they reach the wall. In this way, the image
is both inverted and flipped left-to-right. The image is also
magnified or reduced relative to the size of the object:

hiho

do di
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Rays emanating from the top and bottom of the object pro-
duce one triangle as they travel toward the aperture, and
another after they cross the aperture and travel toward the
wall. These triangles are similar, so their heights hi and ho

vary with their widths di and do in the same way:

hi

di

=
ho

do

Therefore, the camera’s magnification:

m =
hi

ho

=
di

do

If the aperture were small enough, only a single ray could
pass through from any given point on the object. In prac-
tice, a cone of light passes from each such point, causing
the image on the wall to blur. Smaller apertures sharpen
the image by passing narrower cones, but they admit less
light, making it dimmer as well. If the aperture is small
enough, blurring will instead be caused by diffraction.

16.1 Reflection

Very smooth surfaces produce specular reflection, like a
mirror. For any incident ray, there is a plane containing it
that is perpendicular to the reflective surface; when spec-
ular reflection occurs, the reflected ray will also be found
in that plane. Moreover, if the angle of incidence θi is
measured from the incident ray to a line that is normal to
the surface, and if the angle of reflection θr is measured
similarly:

θi θr

then the ray will reflect so that θr = θi. Together, these
guarantees are known as the law of reflection. Unlike
refraction, reflection bends light of all wavelengths at the
same angle.

At the smallest scale, this law also applies to rough sur-
faces, but irregularities on these cause the normal line and
the reflected angle to vary widely from point to point. Be-
cause visible light contains wavelengths between 400nm
and 700nm, irregularities below one micron will produce
specular reflection. Most surfaces, with larger irregulari-
ties, produce diffuse reflection.

Many rays emanate from each point on an object, and these
follow many different paths, allowing the point to be viewed

from different angles. If some of the rays encounter a mir-
ror, they will reflect in a way that produces equal angles of
incidence and reflection. If the incident rays were reversed
and transposed to the other side of the mirror, they would
precisely align with the reflected rays, just as if they and
the reflected rays originated from an object on that side:

s s

The reflected rays thus produce a virtual image of the
original that can be viewed from different angles, just like
a real object. If the object has distance s from the mirror,
the image will appear to be the same distance from the
other side.

16.2 Refraction

When rays encounter a smooth boundary between one
transparent medium and another, some of the light may be
reflected, and some may be transmitted into the new mate-
rial. If the angle of incidence is non-zero, the transmitted
rays will also change direction at the boundary. This is
called refraction.

As already shown, a material’s refractive index n = c/v,
with v being the speed of light in the material. Each ray
is part of a wave front that is perpendicular to the ray, so
if it enters the new material at an angle, one side of the
front will meet the boundary before the other, and the line
of their intersection will sweep across the boundary as the
front advances. Wherever the front meets the boundary,
a disturbance occurs that transmits the wave to the new
medium. If the second material has a higher refractive in-
dex, the new front will be slower, yet the intersection line
travels at a rate consistent with the higher speed of the first
wave. The new front must therefore be flatter relative to
the boundary so that its intersection line sweeps across at
the same rate. This flattening also produces the decrease
in wavelength that is expected when the refractive index
increases.

The amount of refraction can be determined geometrically.
If two wave fronts are crossing the boundary, then two in-
tersection lines will be produced. Viewing the fronts edge-
on shows these lines as points. The rays that cross these
points produce an irregular quadrilateral that can be di-
vided along the boundary into two right triangles, with
these sharing a hypotenuse:
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θL

θH

vH
∆t

v L
∆
t

If vL is the speed of light in the first material, and vH that
in the second, then the lengths of the ray sides will be vL∆t
and vH∆t. The angle of incidence θL and the angle of re-
fraction θH are both measured relative to a line that is
normal to the boundary. It can be shown that θL and θH
also occur within the triangles, so the side lengths:

vL∆t = h sin θL vH∆t = h sin θH

for hypotenuse length h. After solving both for h:

vL∆t

sin θL
=

vH∆t

sin θH

1

vL
sin θL =

1

vH
sin θH

and multiplying by c:

nL sin θL = nH sin θH

This is called Snell’s law, or the law of refraction. Note
that both refraction indices affect the refraction angle, not
just that of the second material. When the ray enters a ma-
terial with a higher refractive index, it bends toward the
normal, but when the refractive index decreases, the ray
bends away from it. The refractive index varies somewhat
with the wavelength of the light, with shorter wavelengths
having higher indices, and therefore moving more slowly
in a given material. The relationship between wavelength
and refractive index is called dispersion, and this is what
causes a prism to split white light into a range of colors.

Snell’s law treats the incident and refraction angles the
same way, so reversing the ray will cause it to refract in a
way the returns it to the original angle:

θL

θH

θL

θH

Therefore, a ray passing through a sheet with parallel faces
will emerge at its original angle, though it will be displaced
in a direction that follows the sheet. If the sheet has a lower
refractive index, the ray will be shifted forward ; if the sheet
has a higher refractive index, the ray will be shifted back :

θL

θL

When an object in one material is viewed from outside that
material, the surface between them acts as a lens, bending
rays that emanate from the object and changing the angles
at which they are perceived. This produces a virtual image
that is closer to or farther from the viewer than the object
really is:

θV

θJ

s

s′

h

The optical axis is a line passing through an optical sys-
tem, about which the system has rotational symmetry; in
this case, a line perpendicular to the boundary. Assume
the axis passes through the object and the viewer. If a
cone of rays leave the object at angle θJ, the incident angle
at the boundary will also be θJ. If the refraction angle is
θV, then the virtual image appears where that same angle
would have been produced without refraction.

The distance from an object to the center of a lens (in this
case, the boundary) is called the object distance s. The
distance from the lens center to the image is called the
image distance s′. By convention, virtual images are as-
sociated with negative image distances. The incident and
refracted rays meet at distance h from the optical axis. In
both cases, this distance is equal to the slope of the ray
multiplied by the real or virtual object’s distance from the
boundary:

h = s tan θJ h = −s′ tan θV
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Equating these allows:

s′ = − tan θJ
tan θV

s

Rays that are almost parallel to the optical axis are called
paraxial rays. Because the pupil is very small relative to
an ordinary viewing distance, only paraxial rays reach the
retina from the object. One of the small angle approxima-
tions allows tanu ≈ sinu when u ≪ 1, so:

s′ ≈ − sin θJ
sin θV

s

But Snell’s law requires that:

sin θJ
sin θV

=
nV

nJ

so the image distance, relative to the object distance:

s′ = −nV

nJ

s

This is true whether the material containing the object has
a higher or lower refractive index. If the index is lower,
refraction will bend the ray toward the normal, and the
object will appear to be farther from the surface than it is.

16.3 Total internal reflection

When light passes from material H to material L, the angle
of refraction is found by solving Snell’s law for θL:

θL = sin−1
(nH

nL

sin θH

)
However, that equation has no solution when nH/nL ·sin θH
is greater than one, or less than negative one. Geometri-
cally, these limits appear because the wavelengths in L are
longer than those in H, and yet the wave front edges in
both materials must align at the boundary. As the inci-
dent angle becomes more oblique, or as the speed of light
in H decreases, the incident fronts intersect the boundary
at smaller intervals. The refraction fronts must produce the
same intervals, and they can be shortened by bending the
ray away from the normal line so that the fronts become
more perpendicular to the boundary. Eventually, however,
the refraction angle θL reaches 90°, and the intervals can
be made no shorter:

L

H

The incident angle θH that produces this is called the crit-
ical angle:

θc = sin−1
(nL

nH

)
When the incident angle equals or exceeds the critical an-
gle, refraction is no longer possible, and the ray is com-
pletely reflected. This is called total internal reflection,
and it occurs only when light passes from a higher refrac-
tive index to a lower one. When the incident angle is just
below the critical angle, some refraction occurs, but the
light is mostly reflected. As the incident angle decreases,
more light is refracted, and less is reflected:

Total internal reflection allows fiber optic cable to trans-
mit light impulses over hundreds of kilometers with little
intensity loss.

16.4 Scattering

Light may be scattered by dust or droplets suspended in
a transparent medium. Because most such particles are
large relative to the wavelength of light, the light is typi-
cally reflected; if the particles are not colored, this produces
a white haze in the medium, as in fog or clouds.

When light is scattered by particles much smaller than its
wavelength, Rayleigh scattering results. The sun pro-
duces a broad range of wavelengths, and when viewed from
space, it is white. When the sun is high, molecules in
the atmosphere cause Rayleigh scattering, but this is most
likely to affect smaller wavelengths. The sky appears blue
because short wavelengths are scattered horizontally before
reaching the ground. The sun itself looks somewhat yellow
because the blue and purple components have been partly
lost. When the sun is very low, its light travels much far-
ther through the atmosphere, and most of its blue light is
lost before it reaches the viewer. As a result, the sun ap-
pears red, and any scattering that does occur at the end
must affect the remaining wavelengths, producing a red or
orange sky.
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16.5 Thin lenses

A focal point is one toward which rays that are parallel
to the optical axis are made to converge, or one from which
they are made to diverge. The focal length is the distance
from the lens surface to a focal point. A focal plane is
one that is parallel to the lens plane, and that contains a
focal point.

Every lens has a lens plane that is centered between its
faces and perpendicular to the optical axis. A lens uses
refraction to bend light rays, and this occurs at the lens
surface, which is some non-zero distance from the plane.
A thin lens is one that is very thin relative to its focal
length, and the object and image distances. In this type of
lens, refraction can be assumed to occur in the lens plane,
which simplifies calculations while introducing relatively
little error.

The faces of a thin lens are almost parallel near the center,
so rays passing through the center will not be bent. If the
lens is assumed to have a zero width, they will not even be
displaced, as normally happens when rays traverse a sheet:

A converging lens is thicker in the middle, so it bends
incoming parallel rays toward its far focal point, on the side
that is away from the light source:

Such a lens also has a focal point on the near side, at the
same distance from the plane. If rays radiate from this
point, they will be bent to produce parallel rays on the far
side.

Every point on an object produces rays that travel in many
directions. When the object distance is greater than the
focal length, a converging lens causes these rays to meet at
a point on its far side. This point is called the real image
of the object point:

The real image can be located by following a number of
special rays with known geometries:

� Because rays that converge on one focal point corre-
spond to parallel rays on the other side, an incoming
parallel ray must cross the far focal point;

� Conversely, a ray that crosses the near focal point pro-
duces a parallel ray on the far side;

� A ray that crosses the center is unaffected by the lens.

All these rays meet at the real image, and they meet on the
side of the optical axis that is below or above the object
point. Every point in the object plane produces a point
in the image plane, and object points that are closer to
the axis produce image points that are also closer, so the
image as a whole is inverted:

For a given object distance, the points in the image plane
are the only ones where the rays intersect, and thus the
only ones that focus the image perfectly. If a screen is
placed in the image plane, a clear representation of the ob-
ject will be visible. Increasing the focal length causes the
bottom special ray to meet the lens at a steeper angle, and
farther from the center, and it causes the top special ray
to exit at a flatter angle. Both effects increase the image
size, and move the image away from the lens, and these
changes are linear with respect to the focal length.

The center-crossing ray produces similar triangles on either
side of the lens:
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h

s h′

s′

If the object and image distances are s and s′, and if the
object and image heights are h and h′:

h

s
=

h′

s′

The lens magnification relates the image height to the ob-
ject height. By convention, both sides of the preceding
equation are negated, so that the magnification:

M = −s′

s

This allows inverted images to be represented with nega-
tive values. Note that the magnification is associated with
a particular object or image distance; it is determined by
the lens, but it is not a property of the lens itself.

When an object is moved inside the focal distance of a con-
verging lens, the rays on the other side cease to converge.
The special rays can still be used to establish the effect
of the lens; in particular, a ray that would have passed
through the near focal point still produces a parallel ray
on the far side:

Instead of converging, the rays appear to diverge from a
point on the near side. This magnifies the object by pro-
ducing an upright virtual image that is larger and more
distant than the original. This image cannot be projected
onto a screen, however, without a second lens to focus it.
A virtual image is considered to have a negative image dis-
tance, so the magnification equation produces a positive
value, as expected. In this case, increasing the focal length
makes the image smaller and brings it closer to the lens.

A diverging lens is thinner in the middle, and this causes
incoming parallel rays to spread out, as though they di-
verged from a single point on the near side:

The lens has a similar focal point on the far side, and it
produces a virtual image when the object is outside the
focal length:

The image position is determined much as before:

� Incoming parallel rays appear to diverge from the near
focal point;

� Rays that would cross the far focal point produce par-
allel rays on the far side;

� Rays that cross the center are unaffected.

Increasing the focal length of a diverging lens makes the
image larger and moves it farther from the lens.

Lenses can be placed in series so the real image projected
by one lens becomes the object of another. When this is
done, the second lens can be analyzed as though the pro-
jected image were a physical object.

16.6 Spherical lenses

A lens can be modeled more accurately by understanding
that light refracts at the lens surface, rather than in the
lens plane. Consider a refractive material with a spherical
face on one side. If an object is placed at point P in some
less-refractive medium, then a ray that emanates from P
will bend toward the normal when it reaches the boundary;
if P is outside the focal point, this will return the ray to the
optical axis at point P ′. Every line that is normal to the
spherical surface crosses the center of the sphere at point
C. The angle of incidence θJ is measured relative to this
line, as is the refraction angle θV. Because the refraction
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angle is greater than zero, C must lie between the surface
and P ′:

αP

h

C

P ′
R

ϕ β

θV

d
s′s

θJ

If the angle between the incident ray and the optical axis
is α, and if the angle between the normal and the axis is ϕ,
then the third angle in this triangle must equal π − ϕ− α.
That angle and θJ must sum to π, so:

θJ = ϕ+ α

Similarly, if the angle between the refracted ray and the
axis is β, then the obtuse angle in that triangle must be
π−β− θV. That angle, when added to ϕ, must produce π,
so:

θV = ϕ− β

Snell’s law requires that nJ sin θJ = nV sin θV. If the in-
cident ray is paraxial, a small angle approximation allows
nJθJ ≈ nVθV, and:

nJ(ϕ+ α) = nV(ϕ− β)

Both triangles have altitude h, which produces a number of
right triangles. If the altitude meets the optical axis at dis-
tance d from the surface, if the object and image distances
are s and s′, and if the sphere has radius R:

tanϕ =
h

R− d
tanα =

h

s+ d
tanβ =

h

s′ − d

The small angle approximations allow tanu ≈ u, and the
smallness of the angles also implies that d is very near zero.
Therefore:

ϕ ≈ h

R
α ≈ h

s
β ≈ h

s′

nJ

( h
R

+
h

s

)
= nV

( h
R

− h

s′

)
and:

nJ

s
+

nV

s′
=

nV − nJ

R

This relates the image distance to the object distance and
the radius. The incident angle is not referenced, so all
paraxial rays that emanate from object point P converge
at real image point P ′.

In this example, the surface is convex with respect to the
object, and its material is more refractive, but the same
equation can be shown to apply to concave surfaces, and
to those that are less refractive. In general, concave sur-
faces must be represented by negative radii. In cases where
the surface produces a virtual image, s′ is also expected to
be negative.

Earlier it was determined that, when viewed from medium
V through a flat surface, the image distance of an object
within medium J is −nV/nJ · s. As R approaches infinity,
the spherical surface becomes flatter, and (nV −nJ)/R ap-
proaches zero. This causes s′ to approach −nV/nJ · s, as
expected.

(nV − nJ)/R is constant, so as s′ decreases, s must in-
crease. Eventually nV/s

′ comes to equal (nV − nJ)/R, and
the equation can no longer be satisfied by moving the ob-
ject away. At that point, the object is infinitely distant,
and the incident rays are parallel to the optical axis. The
resulting image distance therefore marks a focal point:

s′min =
nV

nV − nJ

R

This is the closest the real image can come to the surface.

Reversing a refracted ray causes it to emerge at its origi-
nal angle, so moving the object to the image position will
produce a real image at the original object position. The
original refraction angle must be greater than zero, how-
ever, so the new object position must be farther from the
surface than C. In fact, it must be farther than s′min, be-
cause the rays on the other side are already parallel when
it is at that point. If the object is placed between the sur-
face and s′min, the refracted rays will diverge, and a virtual
image will be created, as when an object is placed within
the focal length of a converging lens:

C

P

P ′

s′min

A similar constraint affects s. When nJ/s equals (nV −
nJ)/R, the refracted rays become parallel, and s marks an-
other focal point. Decreasing the object distance beyond
this point:

smin =
nJ

nV − nJ

R
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causes the rays to diverge from a virtual image.

These findings can be used to understand a lens with two
spherical faces, of radius RA and RB. Assume that the lens
material has refractive index n, while the material around
the lens has an index very close to one, as does air. If the
object P is inside the focal length of the first surface, its
rays will be made to diverge, producing a virtual image P ′

behind the object:

sB

P ′ P ′′

P

s′A

tsA

s′B

RB
RA

If the object and image distances are sA and s′A:

1

sA
+

n

s′A
=

n− 1

RA

The refracted rays approach the second surface just as they
would if the virtual image were a real object within mate-
rial n. The process can therefore be repeated to find the
final image at P ′′.

s′A is measured relative to the first surface, and it repre-
sents a negative number. The second image distance sB
spans a forward interval, so if t is the thickness of the lens,
then sB = t − s′A. If this is also considered to be a thin
lens:

sB = −s′A

Therefore the second object and image distances are related
by:

− n

s′A
+

1

s′B
=

1− n

RB

= −n− 1

RB

Adding this to the previous result:

1

sA
+

1

s′B
=

n− 1

RA

− n− 1

RB

If s and s′ are the distances for the system as a whole, this
produces the thin lens equation:

1

s
+

1

s′
=

1

f

with the focal length f being determined by the lens
maker’s equation:

1

f
= (n− 1)

[ 1

RA

− 1

RB

]
As expected, s approaches the focal length as s′ approaches
infinity, and vice-versa.

In this example, the first surface is convex relative to the
object, and the second is concave, but the same equation
can be shown to apply to other configurations, if concave
radii are again represented with negative numbers. This in-
cludes diverging lenses, meniscus lenses, which have radii
that are both convex or both concave, and even lenses with
one flat surface, this being represented by an infinite radius.

16.7 Resolution

Because a material’s refractive index increases slightly as
wavelengths get shorter, the focal length of a lens is some-
what shorter for violet light than it is for red. The color-
specific blurring this produces is called chromatic aber-
ration.

When spherical lenses were analyzed in the thin lens equa-
tion, the incident rays were assumed to be paraxial so that
small angle approximations could be used. Unless the ob-
ject is very distant relative to the lens diameter, however,
larger angles will be found near the outside of the lens,
and some rays will be focused on slightly different points.
This blurring effect is called spherical aberration, and it
becomes stronger as the lens diameter increases. Converg-
ing lenses and diverging lenses produce offsetting effects,
so spherical aberration can be largely canceled by placing
these in series.

Light can be modeled as a collection of rays, but it is still a
wave. A lens focuses the waves that pass through it, but it
also acts as an aperture, diffracting the waves. As already
seen, when light passes through a circular aperture, it cre-
ates a circular interference pattern called Airy’s disk. If a
screen is placed in the focal plane, the central maximum in
this pattern has width:

w ≈ 2.44
λf

d

with d being the diameter of the lens. An object that is
very small or very distant would be expected to create a
very small image, but w is not affected by the object size,
it is determined only by the size of the aperture, the focal
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length, and the wavelength of the light. w is therefore the
minimum spot size that can be produced by a partic-
ular optical system. It is difficult to produce a lens with
a diameter greater than the focal length, so in practice,
resolution is limited by the wavelength. Though spheri-
cal aberration can be managed by placing lenses in series,
or by using non-spherical lenses, this diffraction effect can
never be eliminated.

Rayleigh’s criterion can be used to determine whether
two object points, such as distant stars, can be resolved
by a given system. The central maximum in Airy’s disk is
surrounded by the first-order minimum, a dark ring where
destructive interference occurs. The angular displacement
of this minimum:

θ1 ≈ 1.22
λ

d

According to Rayleigh’s criterion, two objects of equal
brightness are resolvable if their angular separation is
greater than or equal to θ1. For this reason, θ1 is considered
to be the angular resolution of an optical system.

17 Wave-particle duality and
quantization

17.1 Spectroscopy

An optical spectrometer splits a single ray of light into
distinct spectral components. This can be accomplished by
sending light to a diffraction grating, which produces con-
structive interference for different components at different
angles. The spectrum is then directed to a detector or a
photographic plate.

Different light sources produce different types of spectrum.
When matter is heated until it glows, it produces a con-
tinuous spectrum containing smooth intensity variations
over a range of wavelengths. This type is produced by the
sun or by incandescent lights. When gas is ionized to gen-
erate light within a discharge tube, it produces a discrete
spectrum containing sharp, bright spectral lines at spe-
cific wavelengths.

Different chemical elements produce different spectra when
excited within a discharge tube. Hydrogen produces lines
with wavelength:

λ =
91.19 nm

1/m2 − 1/n2

for integers m and n such that m ≥ 1 and n > m. The
lines where m = 2 are within the visible light range; these
are called the Balmer series. Within each series, the
line spacing progressively decreases as n increases, until
the wavelength reaches the series limit at λ = 364.7 nm.

17.2 X-ray diffraction

X-rays have wavelengths between 0.1 nm and 10 nm. Usu-
ally these pass through matter without being absorbed or
reflected, but they sometimes interact with an atom, caus-
ing a portion of their energy to be radiated as a new spher-
ical wave. The atoms in a crystal are spaced regularly,
for the most part. When x-rays are aimed at a crystal, it
is possible for these spherical waves to interfere construc-
tively, producing reflections at particular angles. This phe-
nomenon is called x-ray diffraction.

If one ray interacts with an atom in a given plane of the
crystal, and if another ray interacts with an atom directly
below it, then constructive interference will occur if the
path-length difference between the rays is an integer mul-
tiple of the wavelength. This difference can be determined
geometrically by connecting the rays with two perpendic-
ular lines that pass through the atom in the first plane:

d

d cos θ

θ

This produces two right triangles with hypotenuse d, equal
to the distance between the planes. If the rays’ angle of
incidence is θ, the adjacent sides will have length d cos θ,
and constructive interference will occur where:

2d cos θ = mλ

for integer m. This is called the Bragg condition. d
must be somewhat larger than half the wavelength to pro-
duce the necessary path-length difference. If it is much
larger, however, many reflection angles will reinforce, and
they will be difficult to resolve.
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Atoms in different planes may not be directly above or be-
low each other. When another ray interacts with an atom
beside the first, however, the same distances are traveled,
and the reflections are again phase-consistent:

Therefore, all reflections within a given plane reinforce, and
the position of each atom within the plane is irrelevant. For
the crystal as a whole, the reflections depend only on λ, θ,
and d.

The atoms in one crystal can be divided into many differ-
ent families of planes, each oriented to produce a different
incident angle θ, and each with a different distance d be-
tween the planes. Every such family is capable of producing
reflections.

At angles that do not meet the Bragg condition, a range of
different phases are encountered in different planes, produc-
ing strong destructive interference. Any reflections there-
fore appear as sharp, narrow intensity peaks. This allows
a crystal to be used as an x-ray monochromator, a device
that selects a particular component from a beam contain-
ing multiple wavelengths.

17.3 Photon model of light

Though light is a wave, it sometimes behaves like a stream
of particles. An image projected by a bright light source
shows fine and apparently continuous detail. If light were
entirely wavelike, a dimmer but equally detailed image
would be produced as the light is attenuated, but instead
a speckle pattern emerges. Each dot in this pattern shows
the impact of a single photon, the particle manifestion of
light. According to the photon theory of light:

� Light is composed of massless particles called pho-
tons. In a vacuum, photons travel at the speed of
light:

c ≈ 3.00× 108 m/s

� The energy of a single photon is given by the Planck-
Einstein relation:

Ep = hf

with f being the light’s frequency, and h the Planck
constant:

h ≈ 6.63× 10−34 Js

� The aggregate behavior of a large number of photons
approaches that of a classical wave.

Paradoxically, light’s wavelike qualities persist even in its
particle manifestation. The double-slit experiment shows
the wavelike nature of light by diffracting the output of
a single light source at two narrow openings. When the
light is relatively intense, smooth gradations can be seen
in the interference pattern that appears on the screen. If
the light is greatly attenuated, a speckle pattern emerges,
yet the dots still conform on average to the original in-
terference pattern. This happens even when photons are
emitted one at a time, implying that each photon passes
through both slits and interferes with itself before cohering
at a single point on the screen.

17.4 Matter waves

Just as light waves can act as particles, particles of matter
can act as waves. If a beam of electrons is aimed at a crys-
tal, and if all the electrons travel at the same speed, they
will reflect at angles consistent with the Bragg condition,
for some wavelength. This implies that the electrons have
reflected and superposed as a wave to produce construc-
tive and destructive interference, just as x-rays do. If the
speed of the electrons is changed, the reflection angles will
change also, but every angle will again be consistent with
the Bragg condition for some wavelength.

It can be shown that the wavelength of these matter
waves:

λ =
h

p

This is called the de Broglie wavelength. p is the parti-
cle’s momentum, so massive or fast-moving particles have
smaller wavelengths. Particles or objects of any size can
be analyzed as matter waves, but larger objects have wave-
lengths that are too small to produce wave phenomena in
real conditions.

At the quantum scale, the wavelike nature of matter in-
troduces constraints that are not seen in classical systems.
Assume that a particle of mass m is bouncing between the
walls of a container with length L. This is called the ‘parti-
cle in a box’ model. If the collisions are perfectly elastic,
the particle will bounce indefinitely, and its waveform will
overlap to produce a standing wave.
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As already seen, a standing wave with fixed points at zero
and L has wavelength λn = 2L/n, for some integer n > 0.
From this it follows that:

h

pn

=
2L

n

so the momenta that are consistent with the length of the
container:

pn =
( h

2L

)
n

The particle’s momentum is therefore quantized by incre-
ments that grow larger as the container decreases in size.
Because kinetic energy E = p2/2m:

En =
(h/2L)2n2

2m
=

h2

8mL2
n2

so the particle’s energy is also quantized. n is called the
quantum number, and En is the energy level of the
particle. The energy quanta become larger as m and L
decrease.

The standing wave can be no less than half a wavelength
long, so n can be no less than one, and the particle’s kinetic
energy cannot be less than E1. As a result, the particle can
never be at rest. The energy level can be expressed relative
to this least energetic state:

En = n2E1

18 Electric charge

An atomic nucleus is around 10−14 m in diameter. Sur-
rounding the nucleus is an electron cloud with a diam-
eter of approximately 10−10 m. Electrons are often said
to ‘orbit’ the nucleus, but wave-particle duality prevents
them from following specific trajectories over these small
distances.

Electric charge is a property of protons and electrons,
and is found nowhere else. The proton has a mass of
1.67× 10−27 kg, and it carries a positive charge, known as
the fundamental unit of charge:

e = 1.60× 10−19 C

The electron has a much smaller mass of 9.11× 10−31 kg,
but it carries an equal negative charge, −e. As will be
seen, every charge produces electrostatic forces that repel
like charges and attract opposite ones. A charge’s effect on
other charges is described by its electric field.

An object’s charge is determined by the number of protons
Np and electrons Ne it contains:

q = (Np −Ne)e

Charge is therefore quantized. An object with no net charge
is electrically neutral.

Protons are not readily added to or removed from nuclei, so
objects become charged by gaining or losing electrons. The
gain or loss of electrons by a single atom is called ioniza-
tion. According to the law of conservation of charge:

Charge cannot be created or destroyed, it can only
be transferred.

Among other things, this prevents electrons from decay-
ing, since there is no combination of lighter particles that
bears the necessary charge. A charged particle that phys-
ically moves is called a charge carrier. The aggregate
movement of charges through a material is called current.

The electrons in the outer shell of an atom are called va-
lence electrons. In metals, valence electrons are loosely
bound to their nuclei. This creates a sea of electrons
around the positively-charged ion cores that contain the
nuclei and non-valence electrons. These conduction elec-
trons serve as charge carriers in metals, and their free
movement makes metals electrically conductive. If a metal
is heated until it glows, it will eject these electrons, in a
process called thermal emission. Ionic solutions are also
conductive, but their charge carriers are ions. It is not nec-
essary for any charge carrier to travel the full length of the
conductor. Most carriers travel only a short distance, ad-
vancing the charge incrementally and causing other carriers
to be displaced in turn.

The valence electrons in an insulator are tightly bound to
their nuclei. An insulator’s surface can be rubbed to pro-
duce a charge, particularly if either material contains com-
plex organic molecules, which are easily broken to produce
molecular ions. The charge cannot move, so it remains on
the surface, in the area that was rubbed.

Charges propagate very quickly in a conductor, and an iso-
lated conductor soon reaches electrostatic equilibrium,
where the net force on every charge is zero, and all charges
are at rest. If the object contains more electrons than pro-
tons (or vice-versa) these excess charges will move away
from each other and spread across its surface.

If a charged object touches an uncharged conductor, the
charge will be shared between them, at least partly dis-
charging the first object. A conductor that is grounded
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shares its charge with the Earth, which can absorb charges
of any practical size. Humid air is a poor conductor, but
it will discharge an object over time.

If a charged object is placed near an uncharged conductor,
some opposite charges in the conductor will be drawn to-
ward the object, and some like charges will be pushed away.
This is called charge polarization. The charged object
must not touch the conductor or it will be discharged.
The force that attracts opposite and repels like charges
decreases with distance. Because the opposite charges are
closer to the charged object, a net polarization force at-
tracts the conductor, even though it is electrically neutral
as a whole. If the opposite side of the conductor is mo-
mentarily grounded, the excess charge on that side will be
discharged. When the charged object is moved away, the
conductor will be left with a net charge opposite that of
the object. This is called charge by induction.

Insulators cannot be polarized in the aggregate because
they do not contain mobile charge carriers. Molecules can
be polarized by displacing their electron clouds in one di-
rection and their nuclei in the other. Two opposite and
slightly separated charges are called an electric dipole.
Placing a charged object near an insulator shifts electrons
and nuclei to create induced dipoles. These also produce
a polarization force, so the insulator is pulled toward the
charge. Water has a molecular structure that acts as a
permanent dipole.

Air is an insulator, but it normally contains small numbers
of electrons that have been freed by background radiation.
In the presence of a strong electric field, these can accel-
erate to a high velocity before striking nearby molecules.
In air, if an electron’s kinetic energy is 2.0× 10−18 J or
more, another electron will be freed by the collision, then
both will be accelerated again, potentially yielding an ex-
ponential proliferation of charge carriers. This avalanche
breakdown is a specific form of electrical breakdown,
which allows an insulator to conduct electricity. When the
free electrons rejoin the ionized molecules, they emit light.
Arcing and lightning are both examples of electrical break-
down, and discharge tubes use it to produce light. Other
electrical breakdown processes can occur in solids and liq-
uids.

18.1 Coulomb’s law

A point charge is an idealized charged object. It has
charge and mass, but no size. Objects can be modeled
with point charges if they are much farther apart than their
actual size.

Given two static point charges qA and qB, separated by dis-
tance r in a vacuum, the magnitude of the electrostatic
force acting on either of them is given by Coulomb’s law:

F =
K|qA||qB|

r2

K is the electrostatic constant:

K ≈ 8.99× 109 Nm2/C2

The force is directed along the line that joins the points,
with opposite charges attracting and like charges repelling.
The SI unit of charge is the coulomb, C. Though
Coulomb’s law applies specifically to static charges, it ap-
proximates the force between moving charges if their rela-
tive speed is much less than the speed of light.

As will be seen, electric flux describes the strength of the
electric field passing through a surface. A medium’s per-
mittivity determines the amount of charge needed to pro-
duce flux, with lower permittivity values producing greater
amounts. The lowest possible permittivity is the vacuum
permittivity, also called the permittivity of free space, the
permittivity constant, or the electric constant :

ϵ0 =
1

4πK
≈ 8.85× 10−12 C2/Nm2

At standard pressure, air consists largely of empty space,
so its permittivity is very close to ϵ0.

This constant allows Coulomb’s law to be expressed as:

F =
1

4πϵ0
· |qA||qB|

r2

18.2 Electric fields

Though the elements in a charge pair interact to produce
the electrostatic force, it is common for one to be desig-
nated as the source charge. Its contribution is repre-
sented as an electric field that can be combined with
another charge to determine the force. If the source is a
point charge Q at the origin, the field within a vacuum:

E⃗ =
1

4πϵ0
· Q
r2

r̂

Electric field strength can be measured in N/C or (as will
be seen) V/m. A typical field strength inside a current-
carrying wire is 10−2 N/C. Near the Earth’s surface, the
strength may be 102 − 104 N/C. Electrical breakdown in
air occurs near 3× 10

6
N/C.
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Given a second charge q within E⃗, the force on q:

F⃗ = qE⃗

If Q is positive, the field will point away from the origin,
like r̂. If q is also positive, the direction of F⃗ will match
that of E⃗, and the second charge will be repelled, as ex-
pected. If Q is negative, E⃗ will point toward the origin,
and positive charge q will be attracted. In general, E⃗ gives
the direction of the force exerted on a positive charge.

Though dipoles are neutral as a whole, they do produce
electric fields. Assume that dipole charges q and −q are
separated by distance s, and that they lie along the y-axis,
with the dipole’s center at the origin. If q is above −q, a
positive charge that is itself above q will be repelled by the
positive pole more than it is attracted by the negative, and
one below −q will be attracted more than repelled. There-
fore, the field will point up wherever the y-axis is above s/2
or below −s/2. It will point down between those points.

When charges combine to produce a field, the field value
at any point is the vector sum of the values produced by
the various charges. Along the y-axis, each dipole charge
vector has only one spatial component, so the vector sum
can be represented with a single number. For points on the
axis and above or below the dipole, the total field strength:

Eax:dip =
q

4πϵ0

[ 1

(y − 1
2
s)2

− 1

(y + 1
2
s)2

]
=

q

4πϵ0

[ 2sy

(y − 1
2
s)2(y + 1

2
s)2

]
Note that this gives the length of the field vector. When
that length is positive, E⃗ points away from the source
charges, just as r̂ does. When it is negative, E⃗ is reversed
relative to r̂.

If the dipole length s is very small relative to the charge
distance y, the denominator approaches y4, producing:

Eax:dip ≈ 1

2πϵ0
· sq
y3

The dipole moment p⃗ represents the polarity or sepa-
ration of charge in a dipole. It points from the negative
charge to the positive with magnitude:

p = sq

measured in Cm. Because the field along the axis and out-
side the dipole always points from the negative end to the
positive, the direction can be given by p⃗, and the signed
value y can be replaced with r, the unsigned distance from

the center of the dipole. Therefore, the charge along the
dipole axis:

E⃗ax:dip =
1

2πϵ0
· p⃗

r3

This would not produce a correct direction or magnitude
between the charges, but it has already been assumed that
r is far outside the dipole. Because each charge is partially
canceled by the other, the field strength decreases with the
cube of the distance, rather than the square, as it would for
a point charge.

Consider the perpendicular plane that bisects the dipole.
If a given point on this plane is assumed to lie along the
x-axis, the field at that point can be divided into x and y
components:

y

x

1
2
s

E⃗qE⃗−q

E⃗p:d

d

−q

q

θ

The point is equidistant from each charge, so the x com-
ponents cancel, the y components combine, and the field
points down everywhere in the plane.

The point, the origin, and charge q combine to form a right
triangle with hypotenuse d. The strength of the q field:

Eq =
1

4πϵ0
· q

d2

If θ is the angle between the hypotenuse and the x-axis,
the y component of the q field:

Ey:q = Eq sin θ

Because:

sin θ =
1

2
s
/
d and d =

√
x2 +

(1
2
s
)2

Ey:q can be expressed in terms of s and x:

Ey:q =
1

4πϵ0
· q

x2 + ( 1
2
s)2

·
1
2
s√

x2 + ( 1
2
s)2

Charge −q produces an equal y component, so the dipole
field strength as a whole, throughout the bisecting plane:

Epl:dip =
1

4πϵ0
· sq[

x2 + ( 1
2
s)2
]3/2
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If s is again assumed to be very small relative to x, and if
x is replaced with the distance to the dipole center, then
the charge in the plane that bisects the dipole:

E⃗pl:dip ≈ − 1

4πϵ0
· p⃗

r3

The value is negated because p⃗ points toward the positive
charge, yet the field in this plane points down.

A field’s structure can be visualized with field lines that
show its direction within a plane containing the charges:

Each line starts at a charge. It follows the field’s direc-
tion and leads eventually to another, opposite charge, or
away from the charges and to infinity. A tangent to any
line shows the field’s direction at that point. Since there
can be only one direction at a given point, the lines can
never cross. The lines are marked with arrowheads that
point away from the positive charge and toward the neg-
ative. The line count in a particular area can be used to
indicate the field strength.

18.3 Uniform charge distributions

Consider a thin rod bearing charge Q that is uniformly
distributed over its length. Within the perpendicular plane
that bisects the rod, the field can be calculated much as
it was for the dipole. If the rod is aligned with the y-
axis and centered on the origin, any point in the plane can
be assumed to lie along the x-axis. Because the charge is
uniform, the rod can be divided into a number of small
sections, each carrying charge ∆Q. Every section above is
matched by another below that is the same distance from
the plane. Because these bear the same charge, their y
components cancel, and their x components add. Sum-
ming the x component for each section gives the field as a
whole.

The section at yi combines with the origin and the plane
point to form a right triangle with hypotenuse di. If the
section acts as a point charge, and if θi is the angle near

the point, the x-component of the section’s field strength:

Ex:i =
1

4πϵ0
· ∆Q

d2
i

cos θi

To integrate over the rod length, it is necessary to express
the function in terms of y. Because cos θi = x/di and
di =

√
x2 + y2

i :

Ex:i =
1

4πϵ0
· ∆Q

x2 + y2
i

· x√
x2 + y2

i

=
1

4πϵ0
· x∆Q

(x2 + y2
i )

3/2

Summing to produce the magnitude of the entire field:

Epl:rod =
1

4πϵ0

∑
i

x∆Q

(x2 + y2
i )

3/2

∆Q must also be related to y. Given rod length L, the
linear charge density:

λ =
Q

L

so that ∆Q = λ∆y. Therefore:

Epl:rod =
λ

4πϵ0

∑
i

x∆y

(x2 + y2
i )

3/2

=
λ

4πϵ0

∫ 1
2
L

− 1
2
L

x

(x2 + y2)3/2
dy

This integral can be solved with trigonometric substitu-
tions. If u = arctan(y/x), then y = x tanu and dy =
x sec2 udu:∫ b

a

x

(x2 + y2)3/2
dy =

∫ y=b

y=a

x2 sec2 u

(x2 + x2 tan2 u)3/2
du

=

∫ y=b

y=a

x2 sec2 u(
(x2)(1 + tan2 u)

)3/2 du

=

∫ y=b

y=a

x2 sec2 u

x3 sec3 u
du

=

∫ y=b

y=a

1

x
cosu du

=
1

x
sinu

∣∣∣y=b

y=a

It happens that arctan(y/x) gives the angle near the point,
so u = θ. Because sin θ = y/

√
x2 + y2:

Epl:rod =
λ

4πϵ0
· y

x
√
x2 + y2

∣∣∣ 12L

− 1
2
L
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=
λ

4πϵ0
· L

x
√

x2 + ( 1
2
L)2

Finally, λL = Q, so the field strength in the plane that
bisects the rod, at distance r from the rod’s center:

Epl:rod =
1

4πϵ0
· Q

r
√
r2 + ( 1

2
L)2

This can be used to determine the field around a straight
line of charge with infinite length:

Eline =
1

4πϵ0
· lim
L→∞

Q

r
√

r2 + ( 1
2
L)2

=
1

4πϵ0
· Q

r · 1
2
L

=
λ

2πϵ0r

This is a good approximation for the field strength around
a straight wire, except near the ends. As will be seen, the
same result can be produced much more easily using Gauss’
law.

Consider the field along the axis passing through a ring of
charge with radius R. If the ring is within the yz plane
and centered on the origin, each point on the x-axis has
the same distance d from every point on the ring. Because
the field produced by an angular ring section is balanced
by the section opposite, the y and z components cancel.
The x component:

Ex:i =
1

4πϵ0
· ∆Q

d2
cos θ

=
1

4πϵ0
· ∆Q

x2 +R2
· x√

x2 +R2

so that:

Eax:ring =
1

4πϵ0
· x

(x2 +R2)3/2

∑
∆Q

∆Q is constant, so the sections can be summed without
integration. At distance r from the origin, the axial field
strength for the ring as a whole:

Eax:ring =
1

4πϵ0
· rQ

(r2 +R2)3/2

This can be extended to a disk of charge. By dividing
the disk into a set of rings, each with center radius si, the
axial field strength:

Eax:disk =
r

4πϵ0

∑
i

∆Qi

(r2 + s2i )
3/2

The surface charge density of area A:

η =
Q

A

so ∆Q = η∆A. If sa and sb are the inside and outside
radii of the ring containing si, so that si = (sb + sa)/2 and
∆si = sb − sa, then the area of the ring:

∆Ai = πs2b − πs2a

= π(sb + sa)(sb − sa)

= 2πsi∆si

Therefore:

∆Qi = 2πηsi∆si

and:

Eax:disk =
r

4πϵ0

∑
i

2πηsi∆si
(r2 + s2i )

3/2

=
ηr

2ϵ0

∑
i

si∆si
(r2 + s2i )

3/2

=
ηr

2ϵ0

∫ R

0

s

(r2 + s2)3/2
ds

If u = r2 + s2 and du = 2sds:

Eax:disk =
ηr

4ϵ0

∫ r2+R2

r2

1

u3/2
du

= − ηr

2ϵ0
· 1√

u

∣∣∣r2+R2

r2

= − ηr

2ϵ0

( 1√
r2 +R2

− 1

r

)
Therefore, the field strength of a disk of charge, at distance
r along the axis:

Eax:disk =
η

2ϵ0

(
1− r√

r2 +R2

)
The field is expected to approximate that of a point charge
when r is large relative to the disk radius R. Often this can
be verified by calculating the limit of the field strength as
r approaches infinity, but, in this case, that limit is zero.
However, after factoring r from the denominator:

Eax:disk =
η

2ϵ0

(
1− 1√

1 +R2/r2

)
The binomial approximation allows:

(1 + x)α ≈ 1 + αx
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when |x| < 1 and |αx| ≪ 1. In this case, x = R2/r2 and
α = −1/2, so:

Eax:disk ≈ η

2ϵ0

(
1−

[
1 +

(
− 1

2
· R

2

r2
)])

=
η

2ϵ0

(1
2
· R

2

r2

)
=

ηR2

4ϵ0r2

when r ≫ R. ηR2 = Q/π, so the field strength at a great
distance:

Eax:disk ≈ 1

4πϵ0
· Q
r2

as expected.

The field strength for a plane of charge is found by letting
the disk radius R approach infinity. At any point outside
the plane:

Epl =
η

2ϵ0

Note that the strength is constant everywhere outside the
plane. This would not hold for a charge of finite size.

A parallel-plate capacitor is constructed from two flat
conductive surfaces called electrodes, with a gap between.
As a charge Q forms on one plate, an equal and opposite
charge −Q forms on the other. Although the total charge
is zero, and the total magnitude of the charges is 2Q, it is
conventional to give the capacitor’s charge at this point as
Q. Because the plates are close, both can be modeled as
simple planes of charge. Each field radiates in both direc-
tions, overlapping inside and outside the capacitor. Inside,
the fields point in the same direction, from positive to nega-
tive, so the field strength is twice that produced by a single
plane. If the plates are separated by vacuum:

Ecap =
η

ϵ0
=

Q

ϵ0A

Outside, the fields point in opposite directions, away from
the positive and toward the negative. In an idealized capac-
itor, these cancel. In practice, a fringe field is produced,
especially near the edges.

18.4 Motion of charged objects

Given a particle with charge q and mass m, its acceleration
within electric field E⃗:

a⃗ =
F⃗

m
=

q

m
E⃗

The magnitude of the acceleration is determined by the
charge-to-mass ratio q/m.

A field with the same direction and magnitude at every
point is called a uniform electric field. This should be
distinguished from a uniform charge distribution, which
could produce a uniform field, but often does not. As ex-
pected, a charged particle experiences constant accelera-
tion in a uniform field.

Because there is no gradient, no net force is exerted on a
dipole in a uniform field, but it is subject to a polarizing
torque. Equal and opposite forces apply to the charges, so
the system acts as a force couple. If the dipole’s length
is s, and if the angle between that length and the lines of
action is θ, then the distance between the lines l = s sin θ:

F⃗−

θ

F⃗+

l
s

Therefore, the magnitude of the torque:

τ = lF = s sin θ · qE

The magnitude of the dipole moment p = sq, so:

τ = pE sin θ

More generally, if r⃗ is the displacement from a pivot to the
point of application, then τ⃗ = r⃗ × F⃗ , so that:

τ⃗ = qr⃗ × F⃗

q
= p⃗×E⃗

19 Gauss’ law

Electric flux Φe, measured in Nm2/C, is the total strength
of the electric field passing through a surface. For a given
field, the flux varies with the area and orientation of the
surface. Larger surfaces collect more of the field, as do sur-
faces that are more perpendicular to it, since these cover
larger areas of the field for a given area within the surface.

A uniform electric field E⃗ can be decomposed into two com-
ponents, one parallel to the surface, and one perpendicular.
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The parallel component does not pass through the surface.
If θ is the angle between E⃗ and unit vector n̂ that is normal
to the surface, the perpendicular component:

E⊥ = E cos θ

Therefore, the flux in a uniform field:

Φe = EA cos θ

If the surface is represented by area vector A⃗ = An̂:

Φe = E⃗ · A⃗

In a non-uniform field, if E⃗i is the strength at a point on
the surface, and if (δA⃗)i is the infinitesimal area at that
point, the flux through the point:

Φi = E⃗i · (δA⃗)i

The flux through the entire surface is given by the surface
integral:

Φe =
∑
i

E⃗i · (δA⃗)i =

∫
E⃗ · dA⃗

A closed surface is one that completely divides an in-
side volume from the outside. A Gaussian surface is a
closed surface with an electric field passing through it. The
flux through such a surface is given by the closed surface
integral:

Φe =

∮
E⃗ · dA⃗

This is calculated like any other integral; the circle over the
integral sign merely indicates that the surface is closed. dA⃗
is assumed to point from inside to outside.

If a point charge is centered within a spherical Gaussian
surface of area A, its field will be constant in strength ev-
erywhere on the surface, and normal to the surface as well.
Therefore:

Φe =

∮
E⃗ · dA⃗ = E

∮
dA = EA

If Q is the source charge, and r the sphere’s radius, and if
both are contained within a vacuum:

E =
1

4πϵ0
· Q
r2

A = 4πr2

E decreases as r increases, but A increases by a like
amount, so the total flux through the surface:

Φe =
Q

ϵ0

This is Gauss’ law. It is one of the Maxwell equations.

The flux through a small angle is constant for any radius,
so the law can be applied to a closed surface of any shape,
since this can be modeled as a collection of narrow radial
sections. By extension, the charge can be placed anywhere
within the volume; it can even be split into a collection of
charges, with their total equal to Q.

Complex surfaces may require that radial sections exit
and re-enter the volume one or more times. These also
conform to Gauss’ law, since exiting produces outward-
pointing dA⃗, entering produces inward -pointing dA⃗ that
cancel, and each section necessarily exits the volume once
more than it enters. Conversely, charges outside a closed
surface produce flux at specific points on the surface, but
they contribute nothing to the total flux, since the number
of entrances always equals the number of exits. Therefore,
the total flux through a closed surface that contains no net
charge is zero.

19.1 Symmetric charge distributions

A shape is symmetric if it is unchanged after one or more
geometric transformations. In particular:

� It has translation symmetry along a given axis if it
is unchanged after moving along that axis;

� It has rotation symmetry about an axis if it is un-
changed after rotating about that axis;

� It has reflection symmetry relative to a plane if it is
unchanged after each point moves to the same relative
position on the other side of the plane.

A symmetric charge distribution produces a field with the
same symmetry. No vector in a symmetric field can have
a component that is inconsistent with the field’s symme-
try, so the field produced by a spherical distribution must
point toward or away from the center, since a tangential
component would change direction when rotated about the
axis connecting the tangent with the center.

Because it shows the total flux through a surface, Gauss’
law can be used to find the field strength through each point,
if it can be shown that the field has the same strength ev-
erywhere on the surface, and if the field is always normal
to the surface.

For a charge distribution with spherical symmetry, a sphere
centered on the distribution meets both these criteria. Con-
sider a spherical shell of charge. For a Gaussian surface
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inside the shell, the total flux must be zero. The field on
the surface of this inside shell is required to have the same
direction and magnitude at all points, so the strength at
these points must also be zero. Therefore, the field strength
must be zero at all points inside the outer shell. The same
can be said of the gravitational field inside a spherical shell
of matter.

Although charges outside a Gaussian surface do not add
to the total flux, they do produce non-zero field values at
specific points if the charge distribution lacks the necessary
symmetry. By itself, Gauss’ law only guarantees that such
charges produce offsetting values at other points, so that
the flux as a whole is zero.

More generally, the field produced by a symmetric distri-
bution is determined by dividing the total flux through the
surface by its area. The area of a sphere is 4πr2, so if Q is
the charge contained by that sphere:

Esph =
Φe

A
=

Q/ϵ0
4πr2

Therefore, the field produced by a sphere of charge, or
any other distribution with spherical symmetry:

E⃗sph =
1

4πϵ0
· Q
r2

r̂

This matches the field produced by a point charge, as long
as r is outside the sphere.

If the sphere is also uniform in its charge density, and if it
has radius R, the field inside the sphere at distance r will
vary with the amount of charge contained by r. If Qr and
Vr are the charge and volume contained by radius r, and if
Q and V are the charge and volume of the distribution as
a whole:

Qr

Q
=

Vr

V
=

r3

R3

so that:

Qr =
r3

R3
Q

Gauss’ law relates the total flux to the contained charge,
so that:

Ein:sph · 4πr2 =
(r3/R3)Q

ϵ0

Therefore, field inside the uniform sphere of charge:

E⃗in:sph =
1

4πϵ0
· Q

R3
r · r̂

Q/R3 correlates with the charge density of the spheres.
As r increases, the charge near the center has less effect,
but much more charge is encompassed by the new vol-
ume. Therefore, though the strength of the field outside
the sphere decreases with the square of the distance, it
increases linearly with distance inside.

As already seen, the field produced by a line of charge can
be derived from Coulomb’s law after a difficult integral
substitution. With Gauss’ law, it is calculated quite easily.
If the line has linear charge density λ, and if a section of
length L is enclosed by a cylinder, the total charge within
Q = λL. The field is normal to the outside surface and
equally strong at all points, while the flat surfaces at the
ends are parallel to the field, so that no flux is produced.
Because the outside area A = 2πrL:

Eline =
Q/ϵ0
A

=
λL/ϵ0
2πrL

=
λ

2πϵ0r

as expected.

The field produced by a plane of charge is found in like
manner. If a cylinder passes halfway through the plane
with its axis perpendicular to it, a disk of charge will be
formed within. Given cylinder radius R and surface charge
density η, the contained charge Q = 2πR2η. The ends of
the cylinder are normal to the field, and their total surface
area is 4πR2. The walls of the cylinder are parallel, so they
produce no flux. The field strength:

Epl =
Q/ϵ0
A

=
2πR2η/ϵ0
4πR2

=
η

2ϵ0

as expected.

19.2 Conductors in electrostatic
equilibrium

When a conductor reaches electrostatic equilibrium, the
field strength everywhere inside drops to zero. Conductors
contain an abundance of charge carriers, so if the field were
non-zero, some charges would move. In particular, if the
field strength were positive, some positive charges would
follow the field, or some negative charges would move in the
opposite direction, and the positive concentration would be
dispersed or canceled. In this sense, the electric field in any
material directs charges toward an equilibrium that dissi-
pates the field itself, though the charges must be mobile
for this equilibrium to be reached. The zero inside field
strength implies that a Gaussian surface anywhere inside
the conductor will have a total flux of zero, which confirms
that no net charge will be found anywhere inside the con-
ductor. Any excess charge must be found on the surface.
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This conclusion holds even when there is a non-conductive
void within the conductor, as long as that void does not
contain a charge of its own. Furthermore, the electric field
on the surface must point outward at every point, and it
must be normal to the surface, since any tangential compo-
nent would produce a current that rearranges the charges.

The same reasoning applies to fields produced by external
charges. At equilibrium, such a field must be normal to the
surface of the conductor, and it must end at that surface.
A metal box can therefore be used to screen an external
electric field from the box’s interior, or vice-versa. Wire
cages are also reasonably effective.

Though it will vary at different points if the conductor is
non-spherical, the field strength just outside the surface can
be related to the surface charge density η at that point. If
a small cylinder passes halfway through the surface, and
if its axis is perpendicular to the surface, a disk of area A
and charge Q = ηA will be enclosed. This resembles the
process used to analyze a plane of charge, but in that case,
the field pointed away from the surface on both sides. This
field has been shown to point outward only, so the field
strength near the surface:

Esurf:conduct =
Φe

A
=

ηA/ϵ0
A

=
η

ϵ0

The surface charge density and field will be especially
strong at sharp edges or points.

20 Electric current

As defined earlier, current is the aggregate movement of
charge through some space. Conduction electrons are al-
ways moving, but this thermal motion is random, and no
net displacement results.

Conduction electrons continue their random motion in the
presence of an electric field, but as a group they also acceler-
ate to the drift speed vd, which is typically near 10−4 m/s.
If n is the number of conduction electrons per cubic meter,
and if A is the conductor’s cross-sectional area, then the
number that passes a given point in one second:

i = nAvd

This is the electron current. In most metals, one electron
per atom is available to carry charge, so n can be derived
from the conductor’s density and atomic mass. Because
conduction electrons are so numerous, a large current can
be produced by moving each electron only a small frac-
tion of the conductor’s length. The current increases with

A because a larger cross-sectional area allows more charge
carriers to be shifted for a given lengthwise displacement.

Electrons can be moved from one place to another, but
they cannot be destroyed. This produces the law of con-
servation of current:

The current is equal at all points in a current-
carrying wire.

By extension:

Given a number of inputs and outputs that connect
at a junction, the total magnitude of the input cur-
rents must equal that of the outputs, while the sum
of the signed inputs and outputs must equal zero.

This is calledKirchhoff’s first law orKirchhoff’s junc-
tion law.

A single electron bounces off many ion cores as it traverses
the conductor. With each collision, a portion of the elec-
tron’s kinetic energy is lost to the cores. This slows the
electron and heats the conductor, much as friction slows a
sliding object and heats the surfaces. The collisions also
change the electron’s direction of motion.

Assume that electric field E⃗ accelerates the electron in the
positive s-axis direction. Between each collision:

as =
F

me

=
−e(−E)

me

=
eE

me

If vs:i is the s-component of the electron’s velocity just af-
ter a random collision, then the velocity after the period
∆t between two collisions:

vs = vs:i +
eE

me

∆t

The average of vs is the drift speed, while the average of
∆t is the mean time between collisions τ , so that:

vd = vs:i +
eE

me

τ

Thermal motion produces no net displacement, so vs:i is
zero, and:

vd =
eE

me

τ

Therefore, the electron current:

i = nA · eE
me

τ =
enAτ

me

E
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Like n, τ is determined by the material. For a given con-
ductor, the current varies with the strength of the field.

Current is more generally defined as the rate at which
charge is transferred:

I ≡ dQ

dt

measured in amperes A, equivalent to C/s. Current is

technically a vector, with I⃗ pointing in the same direction
as E⃗. This gives the direction that positive charge carriers
would move, but most carriers are electrons, which move
against the current indicated by I⃗. This notional flow of
positive charges is sometimes called conventional current.
The current passing through a 100W light bulb is around
0.85A.

If the current is constant, the charge passed through the
conductor:

Q = I∆t

If Ne is the number of electrons in Q, then the magnitude
of the current:

I =
Q

∆t
=

eNe

∆t

However, Ne/∆t is the electron current, so:

I = ei = enAvd

n is determined by the material, A by the shape of the
conductor, and vd by the material and the electric field.
Dividing by A gives the current density:

J ≡ I

A
= envd =

e2nτ

me

E

measured in A/m2. The conductivity:

σ ≡ e2nτ

me

combines the elements of J that are determined by the
material, with larger values producing more current. As a
result:

J = σE

Inverting the conductivity gives the material’s resistivity:

ρ ≡ 1

σ
=

me

e2nτ

measured in Ωm. Note that resistivity is a property of the
material. Resistance (as will be seen) is a property of a

particular object, one that is affected by the resistivity and
by the object’s geometry.

Cooling a metal causes its atoms to vibrate less vigorously,
which decreases the likelihood that a current-carrying elec-
tron will collide with a core. This increases τ and makes
the metal less resistive. At sufficiently low temperatures,
quantum effects cause some materials to exhibit super-
conductivity. In this state, electrons move without col-
liding with the cores, and the material’s resistivity drops to
zero. This allows electrons to continue their motion even
if the electric field disappears.

21 Electric potential

An electric field performs positive work on a positively-
charged object when the object moves in the direction of
the field. Conversely, potential energy is created when the
positive charge moves against the field. If E⃗ is a uniform
field that points in the direction of the positive s-axis, then
the work performed by the field on an object with charge
q:

We = Eq∆s

In general, ∆U = −W , so if U0 is the potential energy at
the s-axis origin, the electric potential energy of charge
q at position s in a uniform field:

Ue = U0 − Eqs

In a non-uniform field, force and work will vary with posi-
tion. The field strenth produced by a point charge qA can
be calculated with Coulomb’s law. If r is the distance from
the field-producing charge qA, the force affecting a mobile
point charge qB in a vacuum:

F =
KqAqB

r2
=

1

4πϵ0
· qAqB

r2

Note that K is the electrostatic constant in this context.
The work performed by the field:

We =

∫ r1

r0

KqAqB
r2

dr = −KqAqB
r

∣∣∣r1
r0

= KqAqB

( 1

r0
− 1

r1

)
and:

∆Ue = KqAqB

( 1

r1
− 1

r0

)
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Note that qB could also move tangentially to the force, but
only the radial displacement will produce work or potential
energy.

Like gravitational potential energy, Ue can be assumed to
equal zero at an infinite distance, where the charges cease
to interact. When this is done, the electric potential energy
at distance r within the point charge field:

Ue =
KqAqB

r
=

1

4πϵ0
· qAqB

r

When qA and qB have the same sign, the charges repel,
and finite distances yield positive energy values that in-
crease as the charges approach. When qA and qB differ
in sign, the charges attract, and finite distances produce
negative energy values that become more negative as they
approach. In both cases, Ue is the gain in potential energy
as qB moves from an infinite distance to r, with negative
gains representing energy losses.

As usual, if there are multiple point charges in the sys-
tem, the total potential energy is equal to the sum of the
energies between each pair. For j charges:

Ue =
∑
i<j

Kqiqj
rij

21.1 Potential energy of a dipole

Dipoles are neutral as a whole, so their translational mo-
tion produces no electric potential energy in a uniform field.
Instead, they create potential energy by rotating.

As already shown, a dipole in a uniform field produces a
force couple, with F⃗+ at the positive end and F⃗− at the neg-
ative. The positive end traces an arc as the dipole rotates
about its center of gravity, but this can be approximated
by straight increment du⃗:

ϕ

F⃗+

du⃗
dϕ

θ
1
2
s

so that the work performed at the positive end:

dW+ = F⃗+ · du⃗

Given angle θ from F⃗+ to du⃗, this yields:

dW+ = F+ cos θ du = qE cos θ du

If the angular displacement is dϕ, and the dipole length s,
the small angle approximation allows:

du =
1

2
s sin dϕ ≈ 1

2
sdϕ

so that:

dW+ =
1

2
sqE cos θ dϕ

du⃗ is perpendicular to the dipole axis, so if ϕ is the starting
angle of the positive end relative to E⃗, then θ = ϕ + π/2,
and:

cos θ = cos(ϕ+ π/2) = − sinϕ

The dipole moment p⃗ points from the negative end to the
positive, with p = sq. Therefore:

dW+ = −1

2
pE sinϕdϕ

As the dipole rotates around its center, the ends move in
opposite directions relative to the field. The charges are
opposite in sign, so the total work is twice the work at
either end, and:

Wdip = −pE

∫ ϕ1

ϕ0

sinϕ dϕ = pE cosϕ
∣∣∣ϕ1

ϕ0

By extension:

∆Udip = −pE cosϕ
∣∣∣ϕ1

ϕ0

The potential energy will reach its minimum when the pos-
itive end points in the direction that E⃗ points, away from
the source charge. It will reach its maximum when the
positive end opposes the direction of E⃗. If the absolute
potential energy is assumed to be zero in the middle of this
range:

Udip = −pE cosϕ = −p⃗ · E⃗
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The potential energy minima −pE are stable equilibria, so
small disturbances will produce small oscillations centered
on these points. The potential energy maxima pE are un-
stable equilibria, so small disturbances will cause the dipole
to rotate continually around its center of mass until the me-
chanical energy is dissipated:

Umax

−π π

U

Umin

ϕ

Energies between these extremes will cause the dipole to
oscillate between two angles without completing full revo-
lutions.

21.2 Energy and potential

The electric field E⃗ has been used to represent the influence
of an arbitrary source charge, allowing the force affecting a
second charge q to be calculated with F⃗ = qE⃗. Just as the
field gives the force at a particular point relative to a unit
charge:

E⃗ =
F⃗

q

the electric potential gives the potential energy at some
point relative to a unit charge:

V ≡ Ue

q

Potential is measured in volts V , equivalent to J/C.

Just as a field’s structure can be visualized with field lines,
it can also be displayed as a contour map. Each line in
the map represents the cross-section of an equipotential
surface, containing points that have the same potential.
Field lines are always perpendicular to these surfaces, and
they point from areas with higher potential to lower poten-
tial. The field strength in each area varies inversely with
the distance between the equipotential lines.

The potential difference ∆V between two points may
also be called the voltage. Some sources confusingly use

V in place of ∆V , or even U or ∆U . Some sources also dis-
card the sign of the difference, so that voltages are always
positive; it is then left to the reader to determine field and
current direction for each component. We will follow the
conventional current direction when calculating differences,
and keep all signs. This will produce positive voltages for
batteries, and negative values for all other components.

As a charged object moves between the points, its potential
energy change:

∆Ue = q∆V

K + Ue is constant when there are no resistive forces, so
changes in potential energy must be offset by changes to
the object’s kinetic energy:

∆K = −q∆V

The field E⃗ inside a parallel-plate capacitor is uniform. As
shown above, if E⃗ points in the direction of the positive
s-axis, and if U0 is the potential energy where s is zero,
the object’s potential energy Ue = U0 − qEs. If the s-axis
origin is placed at the positive plate, and if U0 is zero at
that point, the potential:

Vc = −sE

If the plate distance is d, then the voltage from the positive
plate to the negative:

∆Vc = −dE

This allows the field inside the capacitor to be defined rel-
ative to the voltage:

E = −∆Vc

d

Field strength has been measured in N/C, but this shows it
can also be measured in V/m, which emphasizes the field’s
ability to create potential energy. This is possible because
V ≡ J/C and J ≡ N·m.

A point charge produces a non-uniform field. As shown
above, if Ue is zero when distance r is infinite, point charges
Q and q create potential energy:

Ue =
KQq

r
=

1

4πϵ0
· Qq

r

Therefore, the potential at r:

Vp =
KQ

r
=

1

4πϵ0
· Q
r

For points outside its volume, a uniform sphere of charge
produces the same field that a point charge would produce.
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If the sphere has radius R, and if the potential at its surface
is V0, the sphere’s charge can be derived from that value:

Qs = 4πϵ0RV0

This allows the potential outside the sphere to be related
to the surface potential:

Vs =
1

4πϵ0
· 4πϵ0RV0

r
=

R

r
V0

For multiple point charges, the electric potential at a point
in space can be found by summing the potentials produced
by each source charge:

V =
∑
i

Vi =
1

4πϵ0

∑
i

Qi

ri

This can be used to calculate the potential near various
charge distributions. The potential along axis s passing
through the center of a ring of charge Q with radius R can
be determined by dividing the ring into small arcs, each
with charge dQ. The distance from the axis to any arc:

r =
√
R2 + s2

so the potential along the axis:

V =
1

4πϵ0

∫
dQ√

R2 + s2
=

1

4πϵ0
· Q√

R2 + s2

A disk of charge can be modeled by summing a series of
rings. If each ring has radius ri and charge ∆Qi, then the
total potential at axial distance s:

V =
1

4πϵ0

∑
i

∆Qi√
r2i + s2

The area of one ring:

∆Ai = 2πri ·∆ri

while the surface charge density for the entire disk:

η =
Q

πR2

so the ring’s charge:

∆Qi = η∆Ai =
2Q

R2
ri∆ri

and the total potential:

V =
1

4πϵ0

∑
i

2Q

R2
· ri√

r2i + s2
∆ri

=
Q

2πϵ0R2

∫ R

0

r√
r2 + s2

dr

If u = r2 + s2, then du = 2r dr, and:

V =
Q

2πϵ0R2

∫ R2+s2

s2

1
2
du

u1/2

=
Q

2πϵ0R2
u1/2

∣∣∣R2+s2

s2

So the axial potential produced by a disk of charge:

V =
Q

2πϵ0R2

(√
R2 + s2 − s

)
The surface potential at the disk center is:

V0 =
Q

2πϵ0R

which allows the potential at a distance to be expressed in
terms of the surface potential:

V = V0

√
R2 + s2 − s

R
= V0

(√
1 +

s2

R2
− s

R

)

21.3 Field and potential

As already established, ∆V = ∆Ue/q, while:

∆Ue = −
∫ s1

s0

F⃗ · ds⃗ = −
∫ s1

s0

Fs ds

with force component Fs being directed along the positive
s-axis. Combining these gives:

∆V = −
∫ s1

s0

Fs

q
ds = −

∫ s1

s0

Es ds = −
∫ s1

s0

E⃗ · ds⃗

So, just as the electric potential energy can be related to
the electrostatic force over some displacement, the voltage
can be related to the field strength over that displacement.

These relations allow the potential to be derived from the
field. The potential difference between an infinitely distant
point and position s:

∆V = V (∞)− V (s) = −
∫ ∞

s

E⃗ · ds⃗

If V (∞) is zero, then the potential at s is the sum of the
s-axis field strength from s to infinity:

V (s) =

∫ ∞

s

E⃗ · ds⃗
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This equates the electric potential energy of a unit charge
at position s with the work that would be performed by
field E⃗ if the charge were to move along the s-axis from s
to infinity. Note that a single positive source charge at the
s-axis origin produces a field that matches the direction of
ds⃗, so E⃗ ·ds⃗ produces positive values, and V (s) has positive
values that approach zero as s approaches infinity. A neg-
ative charge at the origin would produce negative values
that approach zero. In both these simple cases, the sign of
V (s) always matches that of the charge that produces E⃗.

V (s) can also be equated with the work that would be per-
formed by an outside force as it brings the unit charge from
an infinite distance to position s:

V (s) = −
∫ s

∞
E⃗ · ds⃗

If the field is produced by a point charge Q on the s-axis,
its strength within a vacuum:

Ep:s =
1

4πϵ0
· Q
s2

and:

Vp(s) =
Q

4πϵ0

∫ ∞

s

1

s2
ds =

Q

4πϵ0
· −1

s

∣∣∣∞
s

=
1

4πϵ0
· Q
s

as calculated earlier.

Conversely, if the displacement is sufficiently small, ∆V
will be small as well, and field strength Es will be essen-
tially constant:

dV = −Es ds

so that:

Es = −dV

ds

Earlier, when discussing mechanical energy diagrams, it
was shown that the negated slope −dU/ds of the U curve
gives the magnitude of the conservative force that produces
the potential energy. A similar relationship is observed
here, since F/q = E and U/q = V .

This allows the field to be derived from the potential.
Starting with the potential of the point charge:

Ep = −dV

ds
= − d

ds

( 1

4πϵ0
· Q
s

)
=

1

4πϵ0
· Q
s2

as expected.

It can be extended to three dimensions with partial deriva-
tives:

Ex = −∂V

∂x
Ey = −∂V

∂y
Ez = −∂V

∂z

The electrostatic force is conservative, so every path be-
tween two particular points produces the same electric po-
tential energy. Every such path also produces the same
potential difference. A path that returns to its starting po-
sition is equivalent to a zero-length path, so it produces no
potential difference. Therefore:

All the potential changes encountered while travers-
ing a loop must sum to zero.

This is called Kirchhoff’s loop law.

As explained earlier, the field everywhere inside a conduc-
tor in electrostatic equilibrium is zero; if it were non-zero,
the field would produce a current that would negate the
field itself. Since the field is zero, the voltage between
any two inside points is zero, and every inside point has
the same potential. This makes the conductor’s surface
an equipotential surface, and ensures that the field out-
side the conductor, if any, is normal at all points to that
surface. Equipotential surfaces near the conductor also
conform roughly to this inside shape.

A battery uses chemical means to separate positive and
negative charges. An ideal battery separates charges
without losing energy to dissipative forces. As the charging
process moves charge q toward the positive terminal, it per-
forms work Wch, which produce a like amount of potential
energy:

∆U = Wch = −We

The work performed per unit of charge while creating this
potential energy is called the electromotive force or emf
of the battery:

E ≡ Wch

q
= ∆V

measured in volts. This is the potential change from the
negative terminal to the positive. Despite its name, emf
represents a potential difference, not an actual force. Also,
the abbreviation is written in lowercase. The same letters,
when uppercased, represent electromagnetic field.

21.4 Potential and current

The terminals of a battery have different potentials. Con-
necting these with a constant-diameter wire creates a uni-
form field Ew inside the wire. If s is the distance along the
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wire, measured from the positive terminal, and if L is its
length:

∆Vw = −
∫ L

0

Ew ds = −EwL

Therefore, the field everywhere inside the wire:

Ew = −∆Vw

L

The field points in the direction of decreasing potential, so
the current moves in this direction as well. Increasing L
necessarily decreases Ew, because a fixed potential differ-
ence is being spanned by a longer path.

As already established, if A is the wire’s cross-sectional
area, and σ its conductivity, the current density:

J =
I

A
J = σEw

so that:

I = AσEw

Because the resistivity ρ = 1/σ:

I =
A

ρ
Ew = − A

ρL
∆Vw

Note that the current varies linearly with the potential dif-
ference.

Earlier, conductivity was used to represent a material’s
ability to produce current, and resistivity was defined as
the inverse of that value. Now it is seen that a conduc-
tor’s geometry affects current production as well. If A is
constant, it can be combined with L and ρ to produce the
conductor’s resistance:

R ≡ ρL

A

measured in ohms Ω, equivalent to V/A. Therefore, the
wire’s current:

I = −∆Vw

R

This is called Ohm’s law.

As noted earlier, the current’s magnitude increases with
A because larger cross-sectional areas allow more charge
carriers to be shifted for a given lengthwise displacement.
Now the magnitude also decreases with L. While individual
electrons move only short distances within the wire, these
increments repeat many more times as the wire length-
ens. The charge as a whole can be said to cross the entire
length, and more ion cores are encountered by electrons as
that length grows. More of the potential energy that moves
the charge is dissipated as thermal energy, and less current
is produced for a given voltage.

21.5 Capacitance

Assume that a capacitor with voltage ∆Vc is wired to the
terminals of a battery that produces voltage ∆Vb:

∆VP

∆VN

∆Vc∆Vb

The wires connecting the positive and negative terminals
have voltages ∆VP and ∆VN. Per Kirchhoff’s loop law, the
voltages crossed by a closed path must sum to zero:

∆Vb +∆VP +∆Vc +∆VN = 0

In this case, following the circuit from the negative ter-
minal to the positive terminal, and then to the capacitor
and back produces zero or negative values for all voltages
except ∆Vb.

The capacitor is uncharged when the circuit is first con-
nected. Whenever there is a potential difference within a
conductor, a current will be produced. Current flows from
high potential to low, so it first moves from the positive
battery terminal through wire P to the positive capacitor
plate, and from the negative plate through wire N to the
negative terminal. ∆Vc is zero when the current starts, so
if the wires have the same physical properties, ∆VP and
∆VN both momentarily equal −∆Vb/2.

As current flows into and out of the capacitor, net charges
accumulate on its plates. These lower the voltages across
the wires, so their current slows. The plate charges also
produce a potential difference within the capacitor, but
it is not conductive, so no current flows through it. The
plates continue to charge until the voltage across each wire
reaches zero. When this happens, all current ceases; the
only non-zero voltages are found in the battery and the
capacitor, and neither of these are conductors. ∆VP and
∆VN are zero, so the capacitor voltage:

∆Vc = −∆Vb
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Just as fields inside conductors produce currents that dis-
sipate the fields themselves, the circuit produces currents
that dissipate its non-zero voltages, but only within the
conductive sections of the circuit.

As already established, the field inside a parallel-plate ca-
pacitor can be related to its plate charges Q and −Q. If
each plate has area A, and if they are separated by a vac-
uum:

E =
Q

ϵ0A

This field can also be related to the capacitor’s voltage, as
measured from the positive plate. Given plate distance d:

E = −∆V

d

The capacitor’s charge is therefore seen to vary linearly
with its voltage, so that the positive plate charge:

Q = −ϵ0A

d
∆V

Capacitance is the magnitude of the charge produced on
either side for each unit of voltage across the plates. It is
conventional to discard the signs, so capacitance is always
positive:

C ≡
∣∣∣∣ Q

∆V

∣∣∣∣
It is measured in farads F , equivalent to C/V. In the
parallel-plate capacitor, with a vacuum between the plates:

C =
ϵ0A

d

Though the vacuum permittivity ϵ0 is often measured in
C2/Nm2, it can also be measured in F/m, which is consis-
tent with the A/d term.

Capacitance increases with A because larger areas allow
charge carriers to be spaced farther apart, reducing their
electrostatic repulsion. It decreases with d because the
charges on each plate attract the opposing plate charges,
counteracting their local repulsion. This opposite-plate at-
traction is what allows the capacitor to store charges in
excess of the charge density within the wires, and it is re-
duced as the plates move apart.

The positive plate charge, relative to the signed capacitor
voltage:

Q = −C∆V

Capacitors need not be structured as parallel plates; in fact,
any two electrodes will interact to produce capacitance.

Assume that a capacitor is constructed from a sphere of
radius RI centered within a spherical shell with inside ra-
dius RO. The voltage from the sphere to the shell:

∆V = −
∫ RO

RI

Er dr

The field between these electrodes is the sum of the fields
produced by the electrodes. The sphere produces the same
field as a point charge, while the shell produces no field in-
side its own volume. If the sphere has charge Q, the voltage
from that electrode to the shell:

∆V = −
∫ RO

RI

1

4πϵ0
· Q
r2

dr =
Q

4πϵ0

( 1

RO

− 1

RI

)
Therefore, the capacitance:

C =

∣∣∣∣ Q

∆V

∣∣∣∣ = ∣∣∣∣ 4πϵ0
1/RO − 1/RI

∣∣∣∣ = ∣∣∣∣4πϵ0 RORI

RI −RO

∣∣∣∣
= 4πϵ0

RORI

RO −RI

When capacitors are wired in parallel, the electrodes con-
nected to the positive battery terminal share the same po-
tential, once the circuit settles. The negative electrodes
also share a common potential, so the voltage across each
capacitor is the same:

C1 C2

The charges on the capacitors can be related to the com-
mon voltage ∆V :

Q1 = −C1∆V Q2 = −C2∆V

The parallel capacitors could be replaced by a single equiv-
alent capacitor Ceq that stores combined charge Qeq =
Q1 +Q2. If that were done:

Ceq =

∣∣∣∣Qeq

∆V

∣∣∣∣ = ∣∣∣∣ Q1

∆V

∣∣∣∣+ ∣∣∣∣ Q2

∆V

∣∣∣∣ = C1 + C2

More generally, for parallel capacitors C1, C2, C3 . . . , the
equivalent capacitance:

Ceq = C1 + C2 + C3 + · · ·
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Similar principles apply when capacitors are wired in se-
ries. The battery charges the positive electrode of the first
capacitor to Q, and the negative electrode of the second
to −Q. The electrodes between these two are also charged,
but these elements and the wire that connects them are
electrically isolated, so their charge is produced entirely by
polarization, and the net charge of this section is zero:

C1

C2

Because of this, each capacitor stores the same charge, and
this value is also the effective charge of the series as a whole.
This is true even when the elements vary in capacitance;
the net charge on the inside section is fixed, so it is im-
possible to balance a large charge produced by a higher
capacitance at one end with a small charge at the other.

If the voltage from the first positive electrode to the second
negative were produced by a single equivalent capacitor, its
voltage ∆Veq = ∆V1 +∆V2. The voltages across the series
capacitors:

∆V1 = − Q

C1

∆V2 = − Q

C2

so the equivalent capacitance:

Ceq =

∣∣∣∣ Q

∆Veq

∣∣∣∣ = ∣∣∣∣ Q

−Q/C1 −Q/C2

∣∣∣∣ = 1

1/C1 + 1/C2

Note that:

Ceq =
1

1/C1 + 1/C2

=
C1C2

C1 + C2

while:

C1 =
C1(C1 + C2)

C1 + C2

All capacitances are positive, so:

C1C2 < C1(C1 + C2)

making Ceq less than the capacitance of either element in
the series.

More generally, given series capacitors C1, C2, C3 . . . , the
equivalent capacitance:

Ceq =
( 1

C1

+
1

C2

+
1

C3

+ · · ·
)−1

21.6 Potential energy of a capacitor

Capacitors can be charged slowly and then discharged very
quickly. This allows them to produce large amounts of
power.

Assume that a battery is charging a capacitor. As the
battery moves charge dq from the negative plate to the
positive, it creates potential energy that varies with the
capacitor’s instantaneous voltage ∆V :

dU = −∆V dq

It is true at all voltages that ∆V = −q/C, so:

dU =
q

C
dq

Note that moving charge increment dq across voltage ∆V
simultaneously decreases the charge of the negative elec-
trode (by moving electrons there) and increases the charge
of the positive electrode (by moving electrons away from
there). This equation relates dU to charge q on the posi-
tive electrode, but the charge change on both sides has been
accounted for.

If the capacitor ultimately stores charge Q, the potential
energy created:

U =
1

C

∫ Q

0

q dq =
Q2

2C

Since Q/C = −∆Vc, it is also true that:

U =
1

2
C(∆Vc)

2

for final voltage ∆Vc.

It was earlier shown that ∆Vc = −dE and C = ϵ0A/d for
distance d and area A in a parallel-plate capacitor, so:

U =
1

2
· ϵ0A

d
· d2E2 =

ϵ0
2
AdE2

The field produced by an idealized capacitor exists entirely
within volume Ad. Therefore, the energy density of the
capacitor’s field:

uE =
Uc

Ad
=

ϵ0
2
E2

measured in J/m3. The same density is produced by other
capacitor designs. In general, fields are sources of potential
energy, and uE is a measure of that energy.
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21.7 Dielectrics

A dielectric is a non-conductive material that is readily
polarized by external electric fields. In a polar dielectric,
like water, molecules are innately polar. In a non-polar
dielectric, the field temporarily induces polarity by pulling
electrons slightly in one direction while pushing nuclei in
the other. In both cases, the polarization produces a field
inside the dielectric that opposes and partially counteracts
the external field, while the dielectric as a whole remains
electrically neutral.

The dielectric constant κ gives the amount by which
the field is attenuated, relative to the field that would have
been produced in a vacuum. In Coulomb’s law and other
equations, ϵ0 can be replaced with κϵ0 to quantify electro-
static phenomena that take place entirely within the di-
electric. When some field is within a vacuum, κ is one. At
standard pressure, air is very similar to a vacuum, and κ
is equal to 1.00054.

In a capacitor, the dielectric diminishes the field and
the voltage produced by a given charge. This allows
more charge to accumulate before the capacitor’s voltage
matches the external voltage, effectively increasing the ca-
pacitance by a factor of κ.

Though it increases capacitance, a dielectric is vulnera-
ble to electrical breakdown, which occurs when the voltage
exceeds the dielectric strength of the material multi-
plied by its thickness. When breakdown occurs, the dielec-
tric starts to conduct, and the capacitor fails. Dielectric
strength is measured in V/m.

22 DC Circuits

Resistors are circuit components with high resistances.
They are often constructed by mixing metal oxides with
glass to form a resistive material, which is deposited onto a
base or substrate. They typically vary from 10Ω to 1MΩ.

A Measurement

Accuracy describes the proximity of a measurement to the
quantity being measured. Precision describes the proxim-
ity of repeated measurements to each other.

Systematic errors shift measurements in a consistent di-
rection. These affect the accuracy of a measurement, but
not its precision. Random errors impart no predictable
bias. These affect precision, but over repeated trials, they
have no effect on accuracy.

The least count of a measuring device is the smallest unit
gradation offered by that device. When taking measure-
ments, it is customary to record all decimal places up to
the least count, plus an estimated digit. This establishes
the number of significant digits in the measurement.

When reading values, zeroes to the left of the first non-zero
digit are not counted as significant digits. If a decimal point
is given, all trailing zeros are considered significant. If there
is no decimal point, the significance of trailing zeroes is not
defined, though they can generally be considered insignif-
icant. Values that are defined rather than measured can
be considered to have an unlimited number of significant
digits.

The result of a calculation should not have more significant
digits than the least precise measurement used, though it
is customary to retain an extra digit if the first digit of the
result is a one. It is permissible to retain one or two extra
digits for intermediate calculations.

SI units take their name from Le Système International
d’Unités. Common prefixes include:

Factor Prefix Symbol

1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da
· · · · · · · · · · · · · · · · · · · · ·

10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a
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B Vectors

By convention, vectors are not allowed to have negative
magnitudes; when such a result is obtained, the vector is
instead given a positive magnitude that points in the op-
posite direction.

In the rectangular coordinate system, a vector A⃗ may be
decomposed into component vectors A⃗x, A⃗y, and A⃗z

which are parallel to the axes. These may be described
by their components Ax, Ay, and Az, which can have
negative values.

The unit vectors ı̂, ȷ̂, and k̂ have unit magnitudes that
coincide with the positive x, y, and z axes. Therefore:

A⃗ = Ax ı̂+Ay ȷ̂+Azk̂

B.1 Dot products

If the counterclockwise angle from A⃗ to B⃗ is θ, the vectors’
dot product or scalar product:

A⃗ · B⃗ ≡ AB cos θ

Since the dot product of a unit vector with itself is one, and
the dot product of any vector with an orthogonal vector is
zero, this gives the sum of the products of the correspond-
ing components:

A⃗ · B⃗ = (Ax ı̂+Ay ȷ̂+Azk̂) · (Bx ı̂+By ȷ̂+Bzk̂)

= AxBx +AyBy +AzBz

B.2 Cross products

If A⃗ and B⃗ are within the xy-plane, their cross product
or vector product:

A⃗× B⃗ ≡ (AB sin θ)k̂

with k̂ pointing toward the viewer when θ is visible as a
counterclockwise turn from A⃗ to B⃗. This product is per-
pendicular to both vectors and normal to the plane con-
taining them. Its magnitude is greatest when A and B are
perpendicular to each other, and it is zero when they point
in the same or opposite directions. The cross product is
not commutative:

A⃗× B⃗ ̸= B⃗ × A⃗

While B⃗ × A⃗ does have the same magnitude, it points in
the opposite direction.

The product rule can be applied to cross products, with:

d

du
(A⃗× B⃗) =

(dA⃗
du

× B⃗
)
+
(
A⃗× dB⃗

du

)
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