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1 Newton’s laws of motion

1.1 Linear motion

In a single dimension, vector quantities like ~v can be repre-
sented with scalars. When this is done, the position after
time t:

x1 = x0 +

∫ t1

t0

v dt

In uniform motion, v is constant, so:

x1 = x0 + vt|t1t0
= x0 + v(t1 − t0)

= x0 + v∆t

Given a graph of position over time, the slope of the line
connecting two points is the average velocity between
them, equal to v = ∆x/∆t. The slope of the tangent at
some point is the instantaneous velocity:

v ≡ lim
∆t→0

∆x

∆t
=

dx

dt

Given a graph of velocity over time, the slope of the line
connecting two points is the average acceleration, equal
to a = ∆v/∆t, while the slope of the tangent is the instan-
taneous acceleration:

a ≡ lim
∆t→0

∆v

∆t
=

dv

dt
=

d2x

dt2

The velocity after a period of acceleration:

v1 = v0 +

∫ t1

t0

a dt

Assuming uniformly accelerated motion:

v1 = v0 + a∆t

so that:

x1 = x0 +

∫ t1

t0

v dt

= x0 +

∫ t1

t0

v0 + a(t− t0) dt

This produces:

x1 = x0 +
[
v0t+

1

2
at2 − at0t

]t1
t0

= x0 + v0∆t+
1

2
at21 −

1

2
at20 − at0t1 + at20

= x0 + v0∆t+
1

2
a
(
t21 − 2t0t1 + t20

)
Finally, since:

(t1 − t0)2 = t21 − 2t0t1 + t20
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the displacement after a period of uniform acceleration:

x1 = x0 + v0∆t+
1

2
a(∆t)2

This is confirmed geometrically:

t0 t1

v1

v0

v0∆t

1
2
a(∆t)2

Because ∆t = (v1 − v0)/a:

x1 = x0 + v0

(
v1 − v0

a

)
+

1

2
a

(
v1 − v0

a

)2

= x0 +

(
2v0v1

2a
− 2v2

0

2a

)
+

(
v2

1

2a
− 2v0v1

2a
+
v2

0

2a

)

= x0 +
v2

1 − v2
0

2a

This allows the velocity change to be expressed relative to
the displacement, rather than the time elapsed:

v2
1 = v2

0 + 2a∆x

1.2 Motion on an inclined plane

The acceleration due to gravity g is always positive. It
represents the magnitude of the true acceleration, not the
direction. g varies at different points on the earth’s surface,
but the standard value is approximately 9.81m/s2.

An object is in free fall when gravity is the only force act-
ing upon it. The velocity of such an object changes by ~af ,
and this vector always points down. If the object is sliding
down a frictionless inclined plane, ~af can be decomposed
into two vectors, ~a‖ that is parallel to the plane, and ~a⊥
that is perpendicular to it:

~af = ~a‖ + ~a⊥

If the angle between the plane and the planet’s surface is
θ, then the angle between ~af and ~a⊥ is also θ:

~a‖

~a⊥
~af

θ
θ

Therefore, the magnitude of the parallel acceleration:

a‖ = g sin θ

This is the component that accelerates the object, since ~a⊥
is opposed by the plane.

1.3 Force

Weight ~w describes the force exerted on an object by grav-
ity, with w = mg.

When one object pulls another, it exerts tension force ~T .
The tension force exerted by a cable has the same direc-
tion as the cable itself. When one object presses against
another, the second object exerts a normal force ~n against
the first that is perpendicular to its own surface. Tension
and normal forces are the result of molecular bonds, which
behave like springs with pulled or pressed.

Inertia describes the innate tendency of objects to resist
changes in their velocity. The inertial mass of an object:

m =
F

a

A superposition of forces acting on one object produces
a single net or resultant force. Newton’s first law, known
as the ‘law of inertia’, holds that the velocity of an object
will remain constant if and only if the net force acting
upon it is zero. Newton’s second law holds that an ob-
ject with mass m, subject to net force ~F , will experience
acceleration:

~a =
~F

m

When net force remains constant, acceleration is constant.

The SI unit of force is the newton:

N = kg ·m/s2

The pound is a force unit in the English system, equal to
about 4.45N.
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An object that is pushed or pulled to produce uniform ac-
celeration a in the vertical axis is subject to two forces: the
normal or tension force ~Fn, and the actual weight, w = mg.
The first of these creates the sensation of weight. Since
Fn −mg must equal ma, this apparent weight:

Fn = m(g + a)

= w

(
1 +

a

g

)
For an object in free fall, a = −g, and the apparent weight
is zero. The actual weight is still mg.

A free-body diagram places an object at the origin of
some coordinate system, and shows all the forces acting
upon it, along with the net force vector:

~w

~n

~T

~FN

An object is in mechanical equilibrium when this net
force (and thus the acceleration) is zero. When at rest,
such an object is in static equilibrium. When in motion,
it is in dynamic equilibrium. Note that these differ only
in the choice of reference frame.

1.4 Resistive forces

Static friction ~fs acts on objects that rest on a surface.
Its direction is opposite the surface-relative motion that
would result if there were no static friction. Kinetic fric-
tion ~fk acts on objects that slide on some surface. Its
direction is opposite the velocity of the motion. Drag ~D
acts on objects that move through fluids. Its direction is
also opposite the velocity of the motion. Resistive forces
are those (like friction and drag) that always oppose the
direction of motion.

Static friction is largely caused by molecular bonding be-
tween surfaces, although, due to their roughness, only
0.01% of these areas may actually touch. Kinetic friction
is produced by weaker attractive forces between molecules.

The static friction force has no fixed magnitude. An object
held by static friction exerts a force ~fs that is equal to and
opposite the motive force acting upon it. There is a maxi-
mum force beyond which static friction fails to operate. In

the simplest model:

fmax:s ≈ µsn

with µs being the coefficient of static friction, and n
the magnitude of the normal force exerted by the surface.
In practice, the condition of the surface also affects this
calculation. The angle at which a resting object will slip
from an inclined surface is called the angle of repose.
This angle is a function of static friction.

Objects that slide are subject to kinetic friction force ~fk

that opposes the direction of motion. Experimentally, fk

is nearly constant, and is less than fmax:s. More generally:

fk ≈ µkn

with µk being the coefficient of kinetic friction. In
practice, surface area and speed also contribute.

Rolling motion is opposed by rolling friction ~fr. This
acts like kinetic friction, with:

fr ≈ µrn

The coefficient of rolling friction µr is generally much
less than µk.

Drag is too complex to be easily generalized, but, when an
object moves fast enough to produce turbulence:

D ≈ 1

2
Cd ρAv

2

with ρ being the density of the fluid, A the object’s cross-
sectional area, and Cd the drag coefficient, which de-
pends on the shape of the object. Cd is often between 0.1
and 1.5.

An object falling straight down will accelerate until D = w.
Equating D with mg gives the object’s terminal speed:

vt ≈
√

2mg

Cd ρA

At lower speeds, the relationship between drag and speed
is approximately linear.

1.5 Planar motion

A position vector is drawn from the origin to a position
in space:

~r = xı̂+ y̂
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A position change is displayed as a displacement, which
is drawn from the start position to the end:

∆~r = ~r1 − ~r0

= (x1 − x0)̂ı+ (y1 − y0)̂

= ∆xı̂+ ∆y̂

A displacement is not a distance. It is a vector quantity,
like velocity, and its direction is significant.

A motion diagram shows the position of an object at
equally spaced points in time, with velocity vectors con-
necting each point with the next. Because they cover in-
tervals of time, the velocity vectors are necessarily aver-
ages. Where possible, the acceleration vector representing
the difference between ~vn and ~vn+1 is shown to emanate
from the point joining ~vn and ~vn+1. Points showing no
acceleration are labeled with the zero vector ~0:

~0~v

~v

~v

~v

~a

~a

The instantaneous velocity:

~v ≡ lim
∆t→0

∆~r

∆t
=

d~r

dt

=
dx

dt
ı̂+

dy

dt
̂

= vx ı̂+ vy ̂

As ∆t approaches zero, ∆~r becomes tangent with the tra-
jectory. Similarly:

~a ≡ lim
∆t→0

∆~v

∆t
=

d~v

dt

=
dvx
dt

ı̂+
dvy
dt

̂

= ax ı̂+ ay ̂

Acceleration can also be decomposed such that ~a = ~a‖+~a⊥,
with component ~a‖ parallel to ~v, and ~a⊥ perpendicular to
it. ~a‖ then gives the change in speed, and ~a⊥ the change
in direction. This causes the coordinate system to change
as ~v changes direction.

Planar motion can be modeled by decomposing ~a into ~ax
and ~ay, and then applying the linear motion model in both
dimensions.

1.6 Projectile motion

Projectile motion results when an object moves in the
horizontal and vertical axes while subject to no force but
gravity. More generally, given constant, non-zero accelera-
tion along one axis, and none along the other, any object
will follow a parabolic trajectory.

For projectile motion with initial velocity ~v0 and launch
angle θ:

vx:0 = v0 cos θ

vy:0 = v0 sin θ

The only acceleration ay = −g. Therefore:

∆x = (v0 cos θ)∆t

∆y = (v0 sin θ)∆t− 1

2
g(∆t)2

If the projectile lands at the height it was launched, ∆y =
0, and:

0 = ∆t(v0 sin θ − 1

2
g∆t)

This equation has two roots, with the zero root represent-
ing the launch time displacement, and the other that of the
landing time. Solving for the second of these:

∆t =
2v0

g
sin θ

Multiplying by vx:0 = v0 cos θ gives the horizontal displace-
ment. Because 2 sin θ cos θ = sin 2θ:

∆x =
v2

0

g
sin 2θ

The distance is maximized when the angle is 45°. Because
sin(180° − 2θ) = sin 2θ, launch angles of θ and (90° − θ)
produce the same distances, as long as 0 ≤ θ ≤ 90°.

The trajectory is found by calculating the component po-
sitions with respect to time, and then substituting one so-
lution into the other to eliminate the time variable:

∆y = (tan θ)∆x−
( g

2v2
0 cos2 θ

)
(∆x)2
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1.7 Relative motion

An inertial reference frame is a coordinate system
within which Newton’s first and second laws hold. A refer-
ence frame defined relative to a point that is accelerating
is not inertial, as free objects will accelerate spontaneously
in the opposite direction. In this sense, the earth is not a
true inertial frame, as it accelerates around the sun.

If inertial frames S and S′ have comparable coordinate sys-
tems, and if ~R is the position of the second origin relative to
the first, displacement vectors referencing the same point
are related by:

~r = ~r ′ + ~R

S

S′

~r ~r ′

~R

y

x

y′

x′

If S′ moves relative to S at velocity ~V , and if they meet
when t = 0, then ~R = ~V t, and:

~r = ~r ′ + ~V t

This is known as the Galilean transformation of posi-
tion. It follows that:

x = x′ + Vxt

y = y′ + Vyt

Since the horizontal velocity component in projectile mo-
tion is constant, projectile motion can be understood as
free fall motion viewed from a different reference frame,
and vice-versa.

If the point referenced by ~r and ~r ′ also moves:

d~r

dt
=

d~r ′

dt
+

d~R

dt

which gives the Galilean transformation of velocity:

~v = ~v ′ + ~V

Similarly:

d~v

dt
=

d~v ′

dt
+

d~V

dt

However, the relative acceleration of inertial reference
frames is defined to be zero:

~A =
d~V

dt
= 0

This gives the Galilean transformation of accelera-
tion:

~a = ~a ′

Neither the mass of an object nor the force exerted upon
it change when observed from different frames. Thus the
Galilean principle of relativity, which states that New-
ton’s laws, applying to phenomena viewed from one inertial
reference frame, still hold when the same phenomena are
viewed from any such frame. By contrast, the speed of a
given light ray is identical in all reference frames, no matter
what their relative velocity. This produces the principles
of special relativity.

1.8 Uniform circular motion

Constant-speed motion in a circular path is called uniform
circular motion. The period T of a circular motion is
the time required to complete one revolution. Given radius
r, dividing the circumference by the period produces the
speed of the motion:

v =
2πr

T

The angular position θ of some point is the angle be-
tween the positive x-axis and the line segment connecting
that point with the origin. The difference between two such
angles is the angular displacement.

In a circle with radius r, each radian of angular displace-
ment spans an arc of length r. More generally, when θ is
measured in radians, the arc length:

s = θr

The angular velocity:

ω ≡ lim
∆t→0

∆θ

∆t
=

dθ

dt

gives the rate at which the angle changes, in radians per
unit of time, with positive values representing counterclock-
wise motion. Because there are 2π radians in each revolu-
tion, and because the period cannot be negative:

|ω| = 2π

T
T =

2π

|ω|
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The properties of an object in circular motion can be de-
scribed with the rtz coordinate system, with the radial
axis r projecting from the object toward the circle’s center,
the tangential axis t tangent to the circle and projecting
in the counterclockwise direction, and the perpendicular
axis z perpendicular to the plane of motion. Given vector
~A in the plane of motion, with angle φ between the vector
and the r-axis:

φ

~A

~At

~Ar

~Ar and ~At form a right angle at the vector’s starting point,
and ~A divides that angle, so that the vector’s radial and
tangential components:

Ar = A cosφ

At = A sinφ

Conversely:

A =
√
A2
r +A2

t φ = arctan
(At
Ar

)
The velocity components vr and vz of an object in circular
motion are zero, while the tangential velocity vt is the rate
at which the object travels the circle. Given arc length s
and angular displacement θ, in radians:

vt =
ds

dt
=

dθ

dt
r = ωr

Though its speed never changes, an object in uniform cir-
cular motion experiences constant centripetal acceler-
ation. With each interval ∆t, assuming average velocity
~v for that interval, the circle’s center combines with the
endpoints of displacement ∆~r = ~v∆t to form an isosce-
les triangle. The equal sides of this triangle have length r
and interior angle θ. When two such intervals pass, and
the beginning of ∆~r0 is aligned with the beginning of ∆~r1,
a similar triangle is formed, the base of which gives the
difference between ∆~r0 and ∆~r1:

θ

θ

α
α

∆~r0

∆~r0

∆~r1 ∆~v∆t

r

α

so that:

∆~r1 −∆~r0 = ~v1∆t− ~v0∆t = ∆~v∆t

Because the sides of similar triangles have equal ratios:

|∆~v∆t|
v∆t

=
v∆t

r

which allows:

ar =
|∆~v|
∆t

=
v2

r
= ω2r

with ~ar pointing at all times toward the center. For a par-
ticular v, ar appears to decrease with r when expressed as
v2/r, and to increase with r when expressed as ω2r, but in
fact it always increases. This is because v = ωr.

To maintain the uniform circular motion, the forces on the
r-axis must sum to mar, while those on the other axes must
sum to zero.

Centrifugal force is the fictitious force that seems to pull
objects away from the center of motion. In fact, it is simply
a manifestation of inertia, and a demonstration that accel-
erating points cannot be used to define inertial reference
frames.

When solving circular motion problems, it is necessary to
remember forces like gravity and friction that may not seem
relevant at first. Be sure that the elements creating the
centripetal force are actually in the plane of motion.

1.9 Circular orbits

When the initial velocity of a projectile is sufficiently large,
the earth’s curvature can no longer be ignored, as the sur-
face will curve away from the projectile as it moves later-
ally.

The centripetal acceleration of an object in a perfectly cir-
cular orbit is proportional to the force of gravity at the
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orbital radius. At the earth’s surface, given orbital speed
vo:

ar =
v2

o

r
=
w

m
= g

This necessitates that:

vo =
√
rg

Though vo appears to increase as r increases, g decreases
with the square of r, so that vo decreases as well. Because
the earth’s radius is almost 6400km, and because low Earth
orbits can be as near as 160km, the surface value of g can
sometimes provide a reasonable approximation.

Since T = 2πr/v, the period of a circular orbit:

To = 2π
√
r/g

A satellite in orbit at 160km has a speed near 28, 800km/h,
and a period of approximately 88 minutes. Like any falling
object, an orbiting body experiences free fall.

1.10 Non-uniform circular motion

An object coasting or swinging through a circular motion
in the vertical plane is subject to two forces: the force of
gravity, and a normal or tension force Fr that pushes or
pulls it toward the center. This normal force depends on
the object’s velocity. Since the motion is circular, it is al-
ways true that Fr = mv2

t /r, and, at the bottom, it also
true that Fr = n−w. n must exceed w if the motion is to
continue, so the apparent weight at the bottom is greater
than w.

At the top of the circle, Fr = n+w. Both n and Fr increase
with v, becoming arbitrarily large as long as the track or
cable does not break. Since w never changes, the minimum
Fr (and therefore the minimum v consistent with circular
motion at the top) is that where n = 0. At this point,
the centripetal acceleration is entirely due to the object’s
weight. This gives mv2/r = w, which yields the critical
speed, the least speed at the top that will complete the
circular motion:

vc =
√
rg

Since v = ωr, this can also be expressed as the critical
angular velocity:

ωc =
√
g/r

As long as v ≥ vc at the top, the normal force will be zero
or more, the apparent weight will be zero or more away
from the center, and the circular motion will continue.

For an object in non-uniform circular motion:

~a = ~ar + ~at

Whereas centripetal acceleration changes an object’s direc-
tion, tangential acceleration:

at =
dvt
dt

=
dω

dt
r =

d2s

dt2
=

d2θ

dt2
r

changes its speed. If at is constant:

∆vt = at∆t

while the arc displacement:

∆s = vt∆t+
1

2
at(∆t)

2

Since ω = vt/r and θ = s/r, dividing by r produces:

∆ω =
at
r

∆t

∆θ = ω∆t+
at
2r

(∆t)2

1.11 Action and reaction

Newton’s third law holds that every force on some ob-
ject is matched by another force affecting another object,
with the forces being equal in magnitude and opposite in
direction. Together, the objects form an action/reaction
pair. The forces must affect different objects. Two forces
affecting the same object can produce an action (if they
combine to generate a net force) but they cannot them-
selves produce a reaction. In particular, no pair is formed
even if the forces are equal and opposite.

Because no action is possible without a complementary re-
action, no interaction can be completely understood with-
out studying all the objects that participate. For conve-
nience, some forces in such interactions are ignored, such
as the gravitational attraction exerted by a small falling
object on the earth. When both forces are included in the
system, they are called internal forces. When one force
is ignored, the included force is called an external force,
and is said to be part of the environment. As will be
seen, internal forces conserve system momentum, but ex-
ternal forces do not.

A motive force produced by an internal energy source is
called propulsion. When walking, the foot exerts a static
friction force against the floor that pushes the floor back,
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while the floor exerts an opposing friction force that pre-
vents the foot from sliding. The force exerted on the foot
is the propulsive force.

Assume an object of mass m is suspended by a cable. If the
object is still or moving at a constant velocity, the forces
on it must be in equilibrium, so the tension at the end of
the cable must equal the object’s weight, mg. If the object
is accelerating up or down, the net force must be non-zero,
and the tension must be greater or less than the object’s
weight. If two such objects are connected by a cable, and
if the cable is suspended by a pulley with the objects hang-
ing at either side, the tension on the cable is still mg. Any
tension greater than mg would cause both objects to rise.

Assume objects A and B are connected by a cable, and the
objects and the cable are at rest. If A is accelerated away
from B so that the cable and B follow it, then the ends
of the cable form action/reaction pairs with A and B. If
gravity is ignored, the only forces acting on the cable are
the tension forces at its ends. The cable has mass m. Since
it is accelerating, the tension at the end near A must be ma
greater than the tension near B, this being the additional
force necessary to accelerate the cable itself. If the cable
had zero mass, the tension would be consistent through-
out its length, and A and B could be treated as a single
action/reaction pair.

When diagramming interactions, create a free-body dia-
gram for each object, being sure that forces are attached
to the objects upon which they act, rather than those from
which they originate. Then draw a dotted line between
each force and its corresponding counterforce. Except for
external forces, every force should join a force on a different
object. The net force on each object should produce the
expected motion for that object.

2 Momentum

An object’s momentum:

~p = m~v

Assuming m is constant over time, this allows force to be
defined as the rate of momentum change, which is how
Newton originally presented his second law:

~F = m
d~v

dt
=

d~p

dt

Momentum has units kg ·m/s.

Alternatively, since Fx dt = m dvx, and since vx varies from
vx:0 to vx:1 as t varies from t0 to t1, summing over these
ranges gives:∫ t1

t0

Fx dt = m

∫ vx:1

vx:0

dvx = m
(
vx:1 − vx:0

)
= ∆px

An impulsive force is one that occurs over a short period.
More generally, an impulse:

~J ≡
∫

~F dt = ∆~p

The statement that J = ∆p is called the impulse-
momentum theorem. J has units N · s, equivalent to
kg ·m/s. If m is constant:

∆~v =
~J

m

As will be demonstrated, the angular momentum of an
object in circular motion:

L = mrvt = mr2ω

with r being the object’s distance from the rotation axis.
Unlike translational momentum, L has the unit kg ·m2/s.

2.1 Conservation of momentum

A system is a group of objects that interact with each
other. An isolated system is one that does not allow
matter or energy to enter or exit. Where momentum is
concerned, this is one for which the net external force on
the objects is zero. In particular, external gravitational
forces are excluded from isolated systems. A closed sys-
tem allows energy to enter or exit, but prevents matter
from doing so. An open system allows either.

If two objects interact so that the magnitude of the force
on the first object is Fs:A, and that on the second is Fs:B,
and if the forces occur along the same axis:

dps:A

dt
= Fs:A

dps:B

dt
= Fs:B

Newton’s third law requires that Fs:A = −Fs:B. Adding
these equations:

dps:A

dt
+

dps:B

dt
= 0

shows that total momentum is constant in the absence of
an external force. This gives the law of conservation
of momentum, which states that the total momentum in
an isolated system is constant. All interactions must be
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examined before a system can be considered isolated. For
instance, momentum is not conserved when a ball bounces
against the ground unless the earth and its momentum is
considered as well.

An object’s velocity constantly changes as it follows a cir-
cular path, so its translational momentum (exclusive of
the system that contains it) is not conserved. However,
the law of conservation of angular momentum states
that, when the net tangential force is zero, the angular mo-
mentum of an object does remain constant. As a result, if
r changes, vt will change to hold L constant.

2.2 Rocket propulsion

If m is allowed to vary, force must be related to momentum
in a more general way:

F =
dp

dt
= m

dv

dt
+ v

dm

dt

Rockets propel themselves by expelling reaction mass at
high velocities. The momentum of the system remains con-
stant as this is done, while that of the rocket changes to
offset the momentum of the reaction mass.

If m and v are the rocket’s starting mass and velocity, the
system’s starting momentum:

p0 = mv

If dm is the change in total mass as reaction mass is ex-
hausted, and if ve is the velocity of the exhausted mass in
the v reference frame, then the system momentum after
this incremental acceleration:

p1 = (m+ dm)(v + dv)− dmve

Notice that dm is added once and subtracted once. As the
rocket’s mass increases by negative quantity dm, the ex-
haust mass decreases by the same negative quantity, leav-
ing the mass of the entire system constant.

If v′e is the exit velocity of the exhaust relative to the rocket:

ve = v′e + v + dv

with v + dv being the rocket’s velocity after acceleration.
This allows:

p1 = (m+ dm)(v + dv)− dm(v′e + v + dv)

= m(v + dv)− dmv′e

The momentum difference:

p1 − p0 = m(v + dv)− dmv′e −mv

= mdv − dmv′e

Any change in momentum must be produced by an im-
pulse:∫ t1

t0

F dt = p1 − p0

In the absence of gravity or drag, the net force on the sys-
tem is zero, so that dmv′e = m dv. If u = −v′e is the positive
speed at which reaction mass is ejected:

−dmu = m dv

If R = −dm/dt is the rate at which reaction mass is con-
sumed, this allows:

−dm

dt
u = m

dv

dt

Ru = ma

This is the first rocket equation. Ru gives the rate of
change in momentum, equivalent to force. In this case, the
force is called thrust:

T = Ru

and it is related by the first equation to the rocket’s acceler-
ation, as Newton’s second law requires. If −dmu = m dv
is instead solved for velocity:

dv = −dm

m
u

the rocket’s acceleration:∫ v1

v0

dv = −u
∫ m1

m0

dm

m

so that:

∆v = u ln
m0

m1

This is the second rocket equation, which relates accel-
eration to the consumption of reaction mass.

3 Energy

3.1 Gravitational potential energy

As already shown:

v2
y:1 = v2

y:0 + 2ay(y1 − y0)
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For a falling object near the earth’s surface, acceleration
will be approximately constant, so that ay = −g. There-
fore:

v2
y:1 + 2gy1 = v2

y:0 + 2gy0

This shows that v2
y + 2gy remains constant over time. Al-

ternatively, because Fy = may:

Fy = m
dvy
dt

= m
dy

dt

dvy
dy

= mvy
dvy
dy

The ratio dvy/ dy allows kinetic energy (which varies with
vy) to be related to gravitational potential energy (which
varies with y). Because it is also true that Fy = −mg,
the exchange between kinetic and potential energy at any
instant:

mvy dvy = −mg dy

vy varies from vy:0 to vy:1 as y varies from y0 to y1, so
summing over these ranges:∫ vy:1

vy:0

mvy dvy =

∫ y1

y0

−mg dy

produces:

1

2
m(v2

y:1 − v2
y:0) = −mg(y1 − y0)

1

2
mv2

y:1 +mgy1 =
1

2
mv2

y:0 +mgy0

The expression:

K =
1

2
mv2

gives the kinetic energy of the object, measured in
joules:

J ≡ N ·m = kg ·m2/s2

Because it varies with v2, K can never be negative. The
expression:

Ug = mgy

gives the object’s gravitational potential energy, if g
is constant. It is also measured in joules. As shown, the
change in kinetic energy for an object in free fall is matched
by an opposite change in potential energy, and vice-versa.
This can be generalized to all forms of potential energy:

∆K = −∆U

Ug can be negative, depending on where the origin is
placed, but ∆Ug will be the same in all reference frames.

Similarly, K will vary when measured from different refer-
ence frames, but ∆K will not.

In the absence of friction, the same results are produced
for an object sliding on an inclined surface. Given axis s
that is parallel to the surface at the object’s position, the
acceleration along s:

Fs = mas = m
dvs
dt

= m
ds

dt

dvs
ds

= mvs
dvs
ds

The object’s weight can be decomposed into two compo-
nents, one perpendicular to the surface that is opposed by
an equivalent normal force, and one parallel. If the s-axis
has angle θ relative to the earth’s surface, then the parallel
component:

Fs = −w sin θ = −mg sin θ

so that:

mvs dvs = −mg sin θ ds

However, a unit change in s produces a change in y equal
to sin θ, so that sin θ ds = dy. This relates the change in
velocity along s to the change in height, just as before:

mvs dvs = −mg dy

This holds whether the surface is flat or curved. The only
difference is that, as θ decreases, as decreases, so that more
time is needed to convert a given height into kinetic energy.

An object’s mechanical energy:

Em = K + U

with U representing all types of potential energy. The law
of conservation of mechanical energy holds this value
to be constant in the absence of resistive forces like friction.
This allows different system states to be quantified with-
out understanding the motions that transform one state to
another.

3.2 Restoring forces

A restoring force is one that returns a system to an equi-
librium state. Elastic systems are those that contain
restoring forces.

If the end of a spring has position se along the axis when
the spring is in equilibrium, its displacement from equilib-
rium:

∆s = s− se
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Hooke’s law states that the spring’s force along the axis
varies linearly with ∆s:

Fe = −k∆s

The spring constant k has units N/m, and is specific to
each spring. This is not a true ‘law’ but it models many
springs adequately if they are not over-compressed or over-
stretched. In its most general form, the law is written
without the negative sign, leaving the direction of the force
unstated. Including the sign shows that Fe opposes the dis-
placement, and is thus a restoring force.

3.3 Elastic potential energy

If an object of mass m is connected to the end of a friction-
less, massless spring, the net force along the spring’s axis
will equal −k(s − se). The force needed to accelerate the
object:

mas = m
dvs
dt

= m
ds

dt

dvs
ds

= mvs
dvs
ds

As before, equating with the restoring force in this system
allows:

mvs dvs = −k(s− se) ds

This could be integrated directly, with v varying from v0

to v1 as s varies from s0 to s1. However, substituting
u = s − se changes the integration limits to the spring
displacements s0 − se and s1 − se. Because se is constant,
du = d(s− se) = ds, so that:∫ v1

v0

mvs dvs =

∫ u1=(∆s)1

u0=(∆s)0

−ku du

1

2
m(v2

1 − v2
0) = −1

2
k
[
(∆s)2

1 − (∆s)2
0

]
This shows that the spring’s elastic potential energy:

Ue =
1

2
k(∆s)2

3.4 Elastic collisions

After a perfectly inelastic collision, objects stick to-
gether and share a common velocity. During an elastic
collision, objects are compressed, converting kinetic en-
ergy into elastic potential energy. The normal forces be-
tween the objects increase until they are maximally com-
pressed, then the objects expand, converting the potential

energy back to kinetic energy. The normal forces drop to
zero as this happens, and the collision ends. The dura-
tion of such a collision depends on the construction of the
objects, but one to ten milliseconds is common. In a per-
fectly elastic collision this process is perfectly efficient,
and all mechanical energy is conserved. Harder materials
produce shorter and more perfectly elastic collisions.

Momentum is conserved during all interactions; this follows
from Newton’s third law, which guarantees that a force pro-
ducing a momentum change on one object is matched by
a force producing an opposite change on some other ob-
ject. As a result, in the absence of any external force, a
system’s center of mass undergoes constant, steady mo-
tion, even as its components collide or otherwise interact.
Though momentum is conserved, kinetic energy is lost if
the objects are imperfectly elastic. Because a difference
in kinetic energy represents a difference in velocity, which
in turn suggests a difference in momentum, this seems to
imply that momentum is not conserved. However, for any
two or more objects, there is a range of individual veloc-
ities that combine to produce the same total momentum,
and different points in this range yield different amounts
of kinetic energy.

In a perfectly elastic collision between objects A and B,
both momentum and mechanical energy will be conserved.
If the motion is limited to one dimension, and if A is in
motion when the objects meet, and B at rest, the total
momentum:

mAvA:1 +mBvB:1 = mAvA:0

If there is no resistive force, the total energy:

1

2
mAv

2
A:1 +

1

2
mBv

2
B:1 =

1

2
mAv

2
A:0

Solving the first equation for vA:1 and substituting into the
second eventually produces:

vB:1

[(
1 +

mB

mA

)
vB:1 − 2vA:0

]
= 0

This yields two solutions. The first, vB:1 = 0, describes the
case where the objects do not meet. In the second:

vB:1 =
2mA

mA +mB

vA:0

Returning this to the momentum equation gives:

vA:1 =
mA −mB

mA +mB

vA:0

This produces five possible outcomes for a perfectly elastic
collision:
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� If mA � mB, A bounces backward at most of its orig-
inal speed, and B moves forward slowly;

� If mA < mB, A bounces backward, and B moves for-
ward;

� If mA = mB, A stops, and B moves forward at A’s
original velocity;

� If mA > mB, A continues forward at a slower rate, and
B moves ahead of it at a rate greater than A’s original
speed;

� If mA � mB, A continues forward at nearly its origi-
nal velocity, and B moves ahead of it at almost twice
that rate.

The Galilean transformation of velocity allows these results
to be used even when both objects are in motion: simply
chose a new frame with velocity V equal to one of the ve-
locities in the original frame. Within the new frame, each
object has velocity v ′ = v−V . If they have the same mass,
the objects will exchange velocities just as they would if one
were at rest.

If the objects are allowed to move in two dimensions, and
if the collision is not direct, some energy will be transferred
to the axis perpendicular to the original velocity:

θA

−θB
~pA:0

~pA:1

~pB:1

A

B

x

Momentum will be conserved along both axes, so if the
original motion follows the x-axis, and if θA and θB are the
counterclockwise angles between that motion and the new
paths:

mAvA:0 = mAvA:1 cos θA +mBvB:1 cos θB

while on the y-axis:

0 = mAvA:1 sin θA +mBvB:1 sin θB

θA and θB are determined by the geometry of the impact.
As object A strikes B, the normal force accelerates each
in opposite directions. The force is perpendicular to the
surfaces at the point of contact:

~pA:0

~pA:1

~pB:1

Because momentum is conserved along both axes, any
change in pA:x or pA:y will be matched by an offsetting
change in pB:x or pB:y, so that the three momentum vec-
tors combine to form a closed triangle.

If the collision is perfectly elastic, kinetic energy will be
conserved as well, so that:

1

2
mAv

2
A:0 =

1

2
mAv

2
A:1 +

1

2
mBv

2
B:1

If the masses are equal, this allows:

v2
A:0 = v2

A:1 + v2
B:1

This recalls the Pythagorean theorem. Since the masses
are equal, the velocity vectors produce a closed triangle. If
the collision is perfectly elastic, ~vA:1 and ~vB:1 also form a
right angle.

3.5 Energy diagrams

An energy diagram graphs an object’s energy on the ver-
tical axis against its position on the horizontal. A horizon-
tal line E shows the total energy, a function U shows the
potential energy at each position, and the distance E − U
gives the kinetic energy K. Since K > 0 implies motion,
the object has a non-zero velocity wherever U < E, and it
continues to move until U = E. The object cannot reach
any position where U > E, which is consistent with the
fact that K is never negative:

E

yA yC

KA

KC

U yB

KB
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For a bouncing object, the horizontal axis gives the ver-
tical position y, and U = mgy, producing a straight line
that intersects the origin. The bounce is assumed to be
instantaneous, so the object has its maximum kinetic en-
ergy when y is zero. As it moves upward, U increases and
K decreases until U and E meet at the object’s maximum
height. The object then falls, and U is converted to K
until y is zero again, where another bounce occurs. The
sequence then repeats.

For an object connected to a spring, the horizontal axis
gives the object’s axial position s, and U is − 1

2
k(s − se)

2,
producing a parabola with its vertex where energy is zero
and where the displacement is se. K cannot be negative,
so E must intersect the parabola at one or two points. If it
intersects at the vertex, the system contains no energy, and
no motion will result. If E is increased, the intersections
will show the points at which the spring is most compressed
and most stretched, and the system will oscillate between
them:

E

smin smax

U

se

Ke

As will be seen, negating the slope of U gives the net con-
servative force acting on the object, so, if the slope is zero
when U = E (so that K is zero) the object will stop. Oth-
erwise, it will turn and resume its motion in the opposite
direction.

Local minima and maxima in U are equilibrium positions
where it is possible for the object to rest. Maxima are
unstable equilibria, since even small increases in E rep-
resent motion that will move the object into regions of force
that reinforce that motion. Minima are stable equilibria,
since small increases will move the object into regions that
oppose the motion, leaving the object to oscillate between
nearby points. Geometrically, the result is determined by
the sign of the slope mF of the conservative force function
at the equilibrium position:

EU

U

ES

sS sU

Fc = −dU
ds

0

mF = −d2U
ds2

0

At unstable equilibra, the sign is positive, so that forward
motion produces a positive force, and backwards motion
produces a negative force. At stable equilibria, the sign is
negative, so that the force is reversed relative to the motion.
Regions where U is flat are known as neutral equilibria.

4 Work

An object’s thermal energy Et is the total kinetic energy
of the molecules within it, along with the potential energy
represented by stretched or compressed molecular bonds.
The system energy of one or more objects is the sum of
their mechanical and thermal energy:

Es ≡ Em + Et

= K + U + Et

The conversion of one energy type to another is called en-
ergy transformation. The exchange of energy between
a system and its environment is called energy transfer.

The mechanical transfer of energy to or from a system is
called work. As will be seen, this is produced by the
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application of some force over a displacement. The non-
mechanical transfer of energy is called heat. Both work
and heat are measured in joules. In the absence of heat,
the work performed on a system:

W = ∆Es

= ∆Em + ∆Et

= ∆K + ∆U + ∆Et

A given process might transfer energy between K, U , and
Et. If their sum also increases, then W is positive, and
the process has transferred energy into the system as well.
If W is negative, energy has been transferred out of the
system.

4.1 Kinetic energy and work

Given a force acting along axis s upon the system:

Fs = mas = mvs
dvs
ds

Fs ds = mvs dvs

Summing over the displacement from s0 to s1:∫ s1

s0

Fs ds =
1

2
mv2

s:1 −
1

2
mv2

s:0

As shown earlier, summing force over time gives the change
in momentum. Now it is seen that work, which sums force
over a displacement, gives the change in kinetic energy :

J ≡
∫ t1

t0

Fs dt = ∆p W ≡
∫ s1

s0

Fs ds = ∆K

The statement that W = ∆K is called the work-energy
theorem.

Because p = mv, kinetic energy can be expressed in terms
of momentum:

K =
p2

2m

Since work is performed only by force components that are
parallel to the displacement, the work performed by a con-
stant force ~F over displacement ∆~r is given by the dot
product:

W = ~F ·∆~r

A force that coincides with the direction of motion per-
forms positive work that increases K, while a force that
opposes it performs negative work that decreases K. This
is consistent with the idea that positive work transfers en-
ergy into the system, and negative work transfers it out.

4.2 Potential energy and work

A conservative force performs the same amount of work
over a given displacement, regardless of the shape or length
of the path that produces that displacement. Resistive
forces are not conservative, as longer paths inevitably pro-
duce larger amounts of work. Some form of potential en-
ergy can be associated with any conservative force, so that
the work performed by the force, as the object falls freely,
or as it is pushed by another force:

Wc = −∆U

The sign is negative because the potential energy associ-
ated with the force decreases when the displacement coin-
cides with the direction of the force. This accords with the
finding that, for an object in free fall, ∆K = −∆U . A sin-
gle point always represents the same amount of potential
energy within a given reference frame. Because noncon-
servative forces allow different amounts of work to be per-
formed while reaching such a point, they cannot associate
a fixed amount of energy with that point unless energy is
added to or removed from the system. In this sense, con-
servative forces conserve mechanical energy.

Because Wc = Fc∆s, it must be the case that:

Fc = −∆U

∆s

Therefore, the instantaneous conservative force:

Fc = lim
∆s→0

−∆U

∆s
= −dU

ds

This is the negative of the slope of the U function in an
energy diagram.

If Wn gives the work of nonconservative forces, then total
work on the object:

W = Wc +Wn

Because mechanical energy is conserved by Wc, any change
in Em must be produced by Wn:

Wn = ∆Em

= ∆K + ∆U



5 NEWTON’S THEORY OF GRAVITY 16

4.3 Thermal energy and work

Resistive forces are also known as dissipative forces. Such
forces are nonconservative, and because they always oppose
the direction of motion, they perform negative work that
removes Em from the system. Since they do not contribute
to U , the work done by dissipative forces:

Wd = ∆K

with ∆K being zero or less. The kinetic energy lost this
way is converted to thermal energy. If the system is not
heated or cooled from the outside:

∆Et = −Wd

Because Wd is never positive, dissipative forces can only
increase Et. Since friction and drag affect both the object
in motion and the surface or fluid that resists that motion,
both object and surrounding medium must be examined
when calculating ∆Et

4.4 Conservation of energy

Nonconservative forces can be divided into dissipative and
external forces. A time-varying magnetic field is one exam-
ple of a nonconservative external force. If We is the work
performed by nonconservative external forces:

Wn = Wd +We

Therefore:

W = Wc +Wd +We

∆K = −∆U −∆Et +We

so that:

We = ∆K + ∆U + ∆Et

The law of conservation of energy holds that the sys-
tem energy of an isolated system is constant when there is
no thermal transfer, and when We is zero. As a result:

∆K + ∆U + ∆Et = 0

∆Em + ∆Et = 0

∆Es = 0

To solve work problems, it is necessary to understand which
forces perform work over a given displacement, whether the
work of each force is positive or negative, and which type
of energy transfer is represented by the work. In general:

K0 + U0 + Et:0 +We = K1 + U1 + Et:1

with every form of work representing a transfer between
two terms on the left. An equation that relates the total
energy at one point to that at another is called an energy
equation.

4.5 Power

Power is the rate at which energy is transferred or trans-
formed:

P ≡ dW

dt

Power is measured in watts, with W = J/s. This abbre-
viation should not be confused with W , which represents
work. Given constant force ~F and position ~r:

dW = ~F · d~r

Dividing by dt gives:

dW

dt
= ~F · d~r

dt
= ~F · ~v

If the angle between ~F and ~v is θ, the power:

P = ~F · ~v = Fv cos θ

In particular, when ~v is constant and directly opposed by a
conservative force like gravity, ~F ·~v gives the rate at which
potential energy is created. This follows from the fact that
K is not changing, and v is the rate of displacement within
the field defining that energy.

5 Newton’s theory of gravity

Kepler’s first law states that planets traverse elliptical
orbits with their sun at one of the focii. His second law
states that a line drawn between the sun and an orbiting
planet covers equal areas over equal time intervals. His
third law states that, for a given system, the square of
each planet’s orbital period varies linearly with the cube of
half the orbit’s major axis.

Newton’s law of gravity states that, for particles of mass
mA and mB, separated by distance r, the magnitude of the
gravitational force affecting each of them:

Fg = G
mAmB

r2
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with the gravitational constant:

G ≈ 6.67× 10−11Nm2/kg2

This can be extended to include spherical objects, or those
shaped as spherical shells, in which case r gives the dis-
tance between the centers. However, for a particle inside
a spherical shell, no net gravitational force is produced.
Therefore, descending below the surface decreases the net
gravitational force, as the ‘shell’ above contributes nothing
to the sum.

As already seen, an object’s inertial mass is defined relative
to the acceleration produced by an arbitrary force:

m =
F

a

The principle of equivalence holds this value to be iden-
tical to the object’s gravitational mass, defined relative
to the gravitational force produced by another object of
mass M . Following from Newton’s law:

m =
r2

GM
Fg

Since Fg = mg, the acceleration due to gravity :

g =
GM

r2

As calculated, this produces a value of 9.83m/s2, rather
than the standard 9.81m/s2 for g at sea level, though a scale
will measure values lower than 9.83m/s2 at most latitudes.
The earth rotates, so a centripetal force is required to main-
tain an object’s position relative to the center of rotation.
The scale measures a normal force on the object that par-
tially opposes the gravitational force, and the sum of the
normal and gravitational forces must produce the required
centripetal force. Near the poles, a scale measures g at
9.83m/s2; near the equator, it measures 9.78m/s2, though
this value is also affected by the height of the earth’s equa-
torial bulge.

5.1 Gravitational potential energy

∆U has been equated with the negative work performed
by a conservative force, but this provides no absolute mea-
sure of potential energy. For that, it is necessary to define
a zero point for U . In simple gravitation problems, U is
defined to be zero where y = 0, at the planet’s surface, but
this is valid only when all y values are much less than the
planet’s radius.

If the objects were infinitely distant, the gravitational at-
traction would be zero. ∆U = −Wc, so if the objects are

moved from center distance r to this infinite distance, the
increase in potential energy:

∆Ug = −
∫ ∞
r

Fc dy

The gravitational force is directed toward the center of the
opposing object, so Fc = −GmAmB/y

2 and:

∆Ug = −
∫ ∞
r

−GmAmB

y2
dy

= −GmAmB

y

∣∣∣∞
r

= G
mAmB

r

This allows potential energy values to be defined relative
to this infinite point, where Ug reaches its maximum value.
If the maximum is given a value of zero in absolute terms,
the absolute potential energy at any distance r will be the
difference between the potential energy at r and that at
zero:

Ug = −GmAmB

r

This value can be negative because only changes in Ug are
significant. The value can be used in energy equations just
as Ug = mgy is, and it remains accurate at any distance.
Ug is properly the potential energy of the system, not that
of a single object. If one object is much less massive, this
distinction can be ignored, as the energy change will be a
fraction of the more massive object’s total.

In a system with more than two objects, the gravitational
potential energy is the sum of the energies between each
pair in the whole. Given a system with three objects, A,
B, and C, the total:

Ug = −G
(mAmB

rAB

+
mAmC

rAC

+
mBmC

rBC

)
Over time, gravity performs work that changes K. An
object’s escape speed is the minimum starting speed suf-
ficient to prevent the object from returning to some at-
tractive body. To ensure this, the object’s velocity must
be zero or greater away from the body after potential en-
ergy has been maximized. This requires that the starting
kinetic energy equal or exceed the difference between the
starting potential energy and the maximum. For an object
to escape the surface of a non-rotating body of mass M
and radius R, if there are no drag effects, its speed must
equal or exceed:

ve =

√
2GM

R
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5.2 Satellite orbits

ar equals v2/r during uniform circular motion. If a satel-
lite with mass m follows a circular orbit around a planet of
mass M , at distance r from the planet’s center, it must be
the case that:

GMm

r2
= mar =

mv2

r

Therefore, the satellite’s speed:

v =

√
GM

r

is independent of its mass. The orbital period:

T =
2πr

v

Setting T to the planet’s rotational period produces a
geosynchronous orbit. Substituting the result for v pro-
duces:

T 2 =
4π2

GM
r3

which is Kepler’s third law, fit to a circular orbit.

The t-axis is tangent to a circle in the rtz coordinate sys-
tem, so a tangential component is not necessarily tangent
to a non-circular path. The angular momentum of an ob-
ject in circular motion L = mrvt, and this value remains
constant as long as the net tangential force is zero. If a
satellite follows an elliptical orbit with instantaneous ve-
locity ~v, and if the angle between ~v and the r-axis is β:

β

~vt

~v

then the magnitude of the tangential velocity vt = v sinβ.
Therefore:

L = mrv sinβ

Because the gravitational force follows the r-axis, which is
always perpendicular to the t-axis, and because no other
force affects the object, the angular momentum remains
constant, even as ~v changes direction and magnitude.

The satellite experiences displacement ∆~s = ~vavg∆t as it
orbits during interval ∆t. Joining the end points of ∆~s

with the focus of the orbit produces a triangle. Because
the angle between ∆~s and the second side is β, the trian-
gle’s height is vavg∆t sinβ:

β

r

∆s

Bisecting a triangle this way produces two right triangles
of the same height, with adjacent sides that sum to r. The
total area:

∆A =
1

2
rvavg∆t sinβ

As ∆t approaches zero, ~vavg approaches the instantaneous
velocity ~v. rv sinβ = L/m, so the rate at which the area
is covered:

lim
∆t→0

∆A

∆t
=

1

2
rv sinβ =

L

2m

Because L is constant, this rate is also constant, thus af-
firming Kepler’s second law.

5.3 Orbital energy

For a satellite in a circular orbit, v =
√
GM/r. Therefore,

the satellite’s kinetic energy:

K =
1

2
mv2 =

GMm

2r

Because Ug = −GMm/r, it is seen that:

K = −1

2
Ug

The magnitude of −GMm/r decreases as r increases, but
the sign is negative, so Ug increases with r. The relation
between K and Ug negates the sign again, so that K de-
creases with r, as expected. If this ratio between K and
Ug is not held, the orbit will not be circular.

For circular orbits, any change in energies can be related
with:

∆Ug = −2∆K
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Although K decreases as r increases, Ug increases by twice
the energy that is lost. The satellite’s total mechanical
energy throughout this orbit:

Em = K + Ug =
1

2
Ug = −GmAmB

2r

The same result holds for elliptical orbits if r is replaced
with the length of the semimajor axis.

The zero energy point was associated with the distance
at which the attractive force reaches zero. Because Em is
negative, this is seen to be a bound system, which is one
where a satellite is tied to another body. For the satellite
to escape, it would need enough kinetic energy to reach
the zero point, and this would require that K ≥ −Ug. This
equation also defines the energy change necessary to trans-
fer from one orbital radius to another.

5.4 Gravitational fields

Instead of attributing gravitation to ‘action at a distance’,
it is more correct to say that one object’s mass produces
a spacetime distortion that changes the trajectory of other
objects as if they were affected by a force. This distortion
is called the gravitational field.

Fields are represented by vector fields that map direc-
tions and magnitudes to points in space. If a gravitational
field is created by one object, and if another object enters
that field, multiplying the mass of the second object by the
field strength at its position gives the force affecting it.

Given objects of mass M and m, the magnitude of the
gravitational force F = GMm/r2, so the magnitude of the
field produced by M is g = /r2. The spherical unit vector
r̂ points away from the origin, so placing M at the origin
allows the field to be expressed as:

~g = −GM
r2
r̂

The magnitude or strength of each gravitational field vector
is measured in N/kg, equivalent to m/s2.

6 Rotation of rigid bodies

Angular acceleration:

α ≡ dω

dt

Because at = dvt/dt and vt = rω, tangential acceleration,
for constant r:

at = r
dω

dt

Therefore, just as vt = rω:

at = rα

The kinematic equations for translational motion are
straightforwardly adapted to rotational motion:

ω1 = ω0 + α∆t

θ1 = θ0 + ω0∆t+
1

2
α(∆t)2

ω2
1 = ω2

0 + 2α∆θ

Different points on a rotating body will have different tan-
gential speeds and accelerations if they vary in distance
from the axis, but they will always have the same angular
velocity and angular acceleration.

6.1 Center of mass

When not constrained by an axle or pivot, the particles in
some object will rotate about the center of mass. If the
object has mass M , and if the particles have mass mi and
position si, the center of mass along axis s will be the
position-weighted average of the particle masses:

sc =
1

M

∑
i

misi

This is seen from the fact that, if particle i is to rotate
around the center, it must be subject to a centripetal force:

Tr:i = miar:i = miriω
2

directed toward that point. If the center’s angular position
relative to the particle is θi:

ri

~Tr:i

θi

si sc

~Ts:i
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then the s component of the particle’s centripetal force:

Ts:i = Tr:i cos θi = miriω
2 cos θi

Angle θi also relates the center’s particle-relative hori-
zontal position to its distance from the particle, so that
cos θi = (sc − si)/ri. As a result:∑

i

Ts:i =
∑
i

miriω
2
(sc − si

ri

)
= ω2

(∑
i

misc −
∑
i

misi

)
= ω2

(
Msc −

∑
i

misi

)
The particle forms an action/reaction pair with the cen-
ter, so the center is affected by an equal force that pulls it
toward the particle. If the center is to maintain its posi-
tion, it must also be subject to a force directed away from
the particle, so that the tension forces affecting the center
along any axis sum to zero:∑

i

Ts:i = 0

Equating the previous result with zero and solving for sc

produces 1
M

∑
i
misi.

More generally:

sc =
1

M

∫
s dm

An object’s mass will not provide ranges for the integra-
tion, so dm must be replaced with an expression of ds that
relates the change in total mass over some interval to the
change in position.

6.2 Torque

Given an object that pivots on a fixed point, the radial
line is that which connects the pivot point with the point
at which some force acts. If force ~F is applied such that
the counterclockwise angle between the radial line and ~F
is φ, then the force’s tangential component Ft = F sinφ:

r

d

~F

~Ft

φ

π − φ

If the distance between the pivot and the point of applica-
tion is r, the torque produced by this force:

τ ≡ rFt = rF sinφ

Torque is measured in newton-meters, Nm. Though
newton-meters are equivalent to joules, torque is not a mea-
sure of energy, and joules are not used here.

~F is directed along the line of action. Torque increases
linearly with r, and is greatest when the line of action is
perpendicular to the radial line. When the line of action
is parallel, sinφ is zero, and the force pulls or pushes the
object without producing torque.

The distance between the pivot and the line of action is
called the moment arm or lever arm d. The segment
defining the moment arm is always perpendicular to the
line of action. When φ is not a multiple of π/2, the mo-
ment arm combines with the radial arm and the line of ac-
tion to produce a right triangle with hypotenuse of length
r, and angle π − φ at the point of application. Because
sin(π − α) = sinα:

d = r sinφ

The moment arm is a distance, not a displacement, so it is
always positive. Therefore:

|τ | = dF

When forces are applied at multiple points, the object’s
response is determined by the net torque:

τ =
∑
i

τi

If an object is suspended by an axle, the net torque pro-
duced by gravity is the sum of the torque values associated
with the particles in the object. For particle i, |τi| = dimig.
Because the gravitational force is perpendicular to the x-
axis, and because the moment arm is perpendicular to the
line of action, placing the axle at the origin allows di = |xi|.
Particles to the left of the axle produce positive values of
φ and sinφ, while particles to the right produce negative
values. Therefore:

τi = −ximig

Summing these values gives:

τg = −g
∑
i

mixi = −gM · 1

M

∑
i

mixi
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= −gMxc

where xc is the position of the center of mass relative to
the rotation axis. This allows the gravitational torque to
be calculated as if the object’s mass were entirely concen-
trated at its center of mass. The object experiences no
torque if the axle coincides with the center of mass, or if it
is directly above or below it.

Two equal but opposite forces applied to different points on
an object are known as a couple. Such forces form parallel
lines of action separated by distance l. If moment arms d0

and d1 give the perpendicular distances from the pivot to
each line, and if the pivot is somewhere between the lines,
the torques will act in the same direction. Therefore:

|τ | = d0F + d1F = lF

Normally, moving a pivot changes τ , but any movement be-
tween these lines lengthens one moment arm by the same
amount that the other is shortened, so all pivots produce
the same torque. This is true even if the pivot is moved
outside the lines of action. When this happens, the torque
from one force opposes the other. As a result, the differ-
ence between the two moment arms is l, and the resulting
net torque equals lF , as before.

If the forces are constant in direction, the lines of action
will change as the couple rotates. As the distance between
them changes, so will the torque.

6.3 Rotational dynamics

Given a particle of mass m traveling a circular path, a tan-
gential force:

Ft = mat = mrα

produces tangential acceleration at. Because it is perpen-
dicular to the radial line, the same force generates torque:

τ = rFt = mrat = mr2α

that in turn produces angular acceleration α. r appears
twice in mr2α, first to equate the particle’s angular dis-
placement with its movement through the circle, and again
to represent the mechanical advantage produced by the mo-
ment arm.

All the particles in an object experience the same angu-
lar acceleration α, so if τ is the net torque on an object
containing particles of mass mi and radius ri:

τ = α
∑
i

mir
2
i

Just as an object’s inertial mass represents its inherent re-
sistance to linear acceleration, its moment of inertia:

I =
∑
i

mir
2
i

gives its resistance to angular acceleration, in units kg ·m2.
By extension:

α =
τ

I

Different pivots produce different moments of inertia, just
as they produce different amounts of torque for a given
tangential force.

More generally, for distance r from the rotation axis:

I =

∫
r2 dm

As before, dm must be replaced with an expression of dr
that relates changes in total mass to changes in position.

If a one-dimensional object is rotated about some pivot, the
moment of inertia can be determined by placing the x-axis
origin at the pivot and integrating. However, if the origin
of the x′-axis is placed at the center of mass, and if that
point is distance d from the pivot, then the x-axis coordi-
nate for a particular point is related to the x′ coordinate
for that same point by x = x′ + d. Therefore:

I =

∫
x2 dm

=

∫
(x′ + d)2 dm

=

∫
(x′)2 dm+ 2d

∫
x′ dm+ d2

∫
dm

The first of these terms is the moment of inertia about the
center of mass, if the rotation axis is parallel to the axis
running through the pivot; if the axes are not parallel, the
x-axis will be foreshortened relative to the x′-axis, and dif-
ferent moments will result. The second term is 2dM times
the center of mass relative to the x′-axis, and because this
point was placed at the origin of that axis, this evaluates
to zero. The third term is d2 times the sum of the mass M .
Therefore, if I is the moment of inertia about the pivot, if
Ic is the moment of inertia about a parallel axis through
the center of mass, and if d is the distance between these
axes, then I can be determined using the parallel-axis
theorem:

I = Ic +Md2
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Similar arguments extend the theorem to objects with more
dimensions. Because Md2 cannot be less than zero, I is
minimized when an object is rotated about its center of
mass.

An object is in translational equilibrium if the net force
on it is zero, giving its center of mass a constant and possi-
bly zero velocity. An object is in rotational equilibrium
if the net torque about every point in the object is zero,
giving it a constant and possibly zero angular velocity. An
object is in total equilibrium if net force and net torque
are both zero.

Problems concerning an object in both translational and
rotational equilibrium can be solved by identifying the
forces that affect the object, expressing these forces in
terms of their x, y, and z components, and then combining
the relevant components into an expression showing the net
torque about some pivot. Because the object is in equilib-
rium, the net forces and the torque can be equated with
zero. The resulting system of equations can then be solved.

6.4 Rotational energy

Each particle in a rotating object has kinetic energy:

Ki =
1

2
miv

2
t:i =

1

2
mir

2
iω

2

Summing these gives the object’s rotational kinetic en-
ergy:

Kr =
1

2

(∑
i

mir
2
i

)
ω2 =

1

2
Iω2

The moment of inertia is again seen to play the role that
inertial mass plays in translational motion.

If an object is not rotating about its center of mass, its
gravitational potential energy could change as it rotates.
In the absence of dissipative forces, however, the total me-
chanical energy:

Em = Kr + Ug

will be conserved. This allows motions that convert one
type of energy to another to be understood without ana-
lyzing the forces that produce the motion.

6.5 Rolling motion

Wheels produce both rolling friction, where they contact
the road, and kinetic friction, where they meet bearings.

Although sleds produce only kinetic friction, wheels are
more efficient than sleds. First, their bearings can be lu-
bricated more effectively than the rails of a sled. Second,
the radial distance from the outside of the wheel to the
outside of the bearing grants a mechanical advantage that
helps the wheel overcome kinetic friction. Assume that
force F is required to pull a wheeled vehicle at a steady ve-
locity. Because the vehicle is not accelerating, F must be
opposed by an equal force that is produced by rolling and
kinetic friction. This force acts between the wheel and the
road, and it opposes the direction of the vehicle, causing
the wheel to rotate forward. At the outside of the wheel,
the rotation is opposed by rolling friction fr, while at the
bearing, it is opposed by kinetic friction fk. Because the
wheel is not accelerating, the net torque must be zero. If
R is the outside wheel radius, and Rb the radius at the
bearing, this requires that:

Rbfk +Rfr −RF = 0

Therefore:

F =
Rb

R
fk + fr

The larger the wheel, the less force is required to overcome
the friction at the bearing.

In one revolution, a wheel moves its center forward by one
circumference, so that ∆sc = 2πR. If vc is the wheel’s ve-
locity, and if T is the time to complete one rotation, then
it is also true that ∆sc = vcT . This produces the rolling
constraint, which relates the wheel’s translational veloc-
ity to its tangential velocity:

vc =
2π

T
R = ωR

Because its tangential velocity exactly opposes the wheel’s
translational velocity, the point P at the bottom of a wheel
is instantaneously at rest if the wheel does not slip. Con-
versely, because its tangential velocity matches the wheel’s
translational velocity in magnitude and direction, the point
at the top of the wheel has velocity 2ωR. The velocity of
points between these two varies linearly with each point’s
distance from P , and this point can be seen as an instan-
taneous pivot for the wheel as a whole.

The wheel’s total kinetic energy includes both rotational
and translational components. The center of mass exhibits
translational motion, so if the rotational energy were calcu-
lated relative to the center, it would be necessary to include
translational kinetic energy when finding K. P is motion-
less, however. For the instant that P serves as a pivot, the
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wheel moves around it, and if it continued to do so, the
wheel’s translational motion would end.

Therefore, assuming IP is the moment of inertia about P ,
the total kinetic energy:

K =
1

2
IPω

2

If the wheel’s center of mass is at its center, then by the
parallel-axis theorem, IP = Ic +MR2. This produces:

K =
1

2
Icω

2 +
1

2
MR2ω2

Because vc = ωR:

K =
1

2
Icω

2 +
1

2
Mv2

c = Kr +Kc

with Kc being the translational kinetic energy of the cen-
ter of mass. From this it is seen that wheels with greater
moments of inertia require greater amounts of energy to
achieve a given speed. By extension, spheres, filled cylin-
ders, and hollow cylinders of the same mass roll at differ-
ent rates down an inclined plane, since the plane provides
the same amount of potential energy for a given mass and
displacement. A rotating object produces a higher angular
velocity for a given amount of energy when more of its mass
is concentrated near its center, so a sphere rolls faster than
a filled cylinder, which in turn rolls faster than a hollow
cylinder.

6.6 Angular momentum

When rotation occurs about a fixed axis, quantities like
angular velocity, angular acceleration, and torque can be
treated as scalars; for more general problems, these must
be represented with vectors. If ~r is the displacement from
the axis to the point of application, the torque vector:

~τ ≡ ~r × ~F

Positive values – which produce counterclockwise acceler-
ation – are represented by vectors that point toward the
viewer:

~r

~F

~τ

θ

x

y

z

~τ has a direction and a magnitude, but it does not have a
specific position. Any acceleration will occur relative to a
pivot or the center of mass.

During circular motion, ~v and ~p are always perpendicular
to ~r, so that angular momentum L = rp. This can be gen-
eralized to include non-circular motion, where ~p and ~r are
not orthogonal:

~L ≡ ~r × ~p

For an object containing particles that each have angular
momentum ~Li:

~L =
∑
i

~Li

Euler’s rotation theorem guarantees that, given two axes
that meet at a fixed point within the object, any combined
angular displacement can be reproduced as a single rota-
tion about a third axis that crosses the same point. There-
fore, though an object might rotate about more than one
axis over time, that motion follows a single (possibly mov-
ing) axis at a given instant. Each particle has one transla-
tional momentum at this instant, so its angular momentum
– and the sum of all angular momenta in the object – must
be a single vector as well. However, an angular momen-
tum vector that represents a complex rotation of this type
could also represent a simple rotation around a single axis,
so an object’s angular momentum does not uniquely define
its rotation.

For a constant mass, the rate at which ~L changes over time:

d~L

dt
=

d

dt
(~r × ~p) =

(d~r

dt
× ~p
)

+
(
~r × d~p

dt

)
= (~v × ~p) + (~r × ~F )

Because ~v and ~p have the same direction, their cross prod-
uct is zero. Therefore, just as d~p/dt = ~F :

d~L

dt
= ~r × ~F = ~τ

The net torque affecting an object is produced both by ex-
ternal and internal forces. Because every internal force is
part of an action/reaction pair, their torque contribution
sums to zero. This yields the law of conservation of
angular momentum, which states that the direction and
magnitude of ~L are conserved within an isolated system.

While it is always true that L = Iω, ~L is not guaranteed to
point in the same direction as ~ω unless the object is rotated
about an axis of symmetry. When this is done:

~L = I~ω
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Because angular momentum has a direction, it is difficult to
reorient the axis of a spinning object such as a gyroscope;
to do so, it is necessary to change the momentum of almost
every particle in the object. As the tangential velocity of
each particle grows, the momentum change necessary to
turn the axis to a given angle increases:

~p

∆~p

6.7 Precession

If a spinning top is not perpendicular to the floor, the top’s
axis will circle the perpendicular axis in the same direction
that the top is spinning. This motion is called precession.

The top starts with angular momentum ~L, which aligns
with the spin axis at angle φ from the perpendicular. If ~L
is made to start at the pivot, its end will trace a circle of
radius L sinφ that is centered on the perpendicular axis:

L sinφ

~L

φ

d~L

~τ

If the top has mass m, and if its center of gravity has
displacement ~r relative to the pivot, gravity will produce
torque τ = mgr sinφ about the pivot, directed at a right
angle to ~L and tangent to the circle. By itself, this torque
would rotate the top away from the perpendicular axis, but
when combined with ~L, it produces a lateral motion that
follows ~τ . Because ~τ = d~L/dt, the top’s angular momen-
tum changes by:

dL = mgr sinφ · dt

causing the end to traverse a small arc on the circle. The
circle’s radius is L sinφ, while the arc length is dL, so the

angle of this arc:

dθ =
dL

L sin θ
=
mgr sinφ · dt

L sinφ

Therefore, the angular velocity of the precession:

ω =
dθ

dt
=
mgr

L
=
mgr

Iω

~τ is always perpendicular to ~L and tangent to the circle,
so the motion continues, with ω increasing over time as
friction diminishes L. Just as a satellite constantly ‘falls’
toward the body it orbits, the top constantly rotates to-
ward the floor, but it does so in a way that maintains the
overall structure of the system.

The direction of this motion is most easily understood by
imagining a spinning wheel that faces the observer. If the
wheel turns counterclockwise relative to this viewpoint,
particles near the left and right edges will have transla-
tional momenta that point down and up. If the wheel is
subjected to an upward-pointing torque that rotates the
left edge toward the observer, particles near the left and
right edges will be displaced in space, but their momenta
will not change in magnitude or direction. Momenta near
the top will be changed, however; these left-pointing vec-
tors will be made to point somewhat toward the observer,
while right-pointing vectors near the bottom will be made
to point away. In order to conserve more of their original
momentum, particles near the top will pitch away from the
observer, while those near the bottom will pitch toward,
rotating the wheel along a third axis that is orthogonal to
both the spin axis and the torque.

The top behaves in a similar manner. As the torque rotates
it away from the perpendicular axis, translational momenta
on the leading edge turn upward, while those on the trail-
ing edge turn toward the floor. To maintain more of their
original momentum, particles on the leading edge dip, while
those on the trailing edge rise, causing the top as a whole
to lean in the direction of ~τ .

7 Oscillation

A periodic motion around some equilibrium position is
called oscillatory motion. Objects that produce such
motion are oscillators. Whereas the period T gives the
time to complete one cycle, the reciprocal of this value
gives the number of cycles completed in one unit of time.
This is known as the frequency:

f =
1

T
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Just as an object’s angular velocity tells its rate of rotation
in radians per second, an oscillator’s angular frequency
gives the rate at which it cycles, also in radians per second:

ω =
2π

T
= 2πf

7.1 Simple harmonic motion

If an object in uniform circular motion has angular posi-
tion φ relative to axis s, and if the motion has radius A
and is centered on the origin of axis s, the s-axis position:

s = A cosφ

The motion along this axis is an example of simple har-
monic motion, which produces a sinusoid when graphed
against time. The motion’s phase:

φ = ωt+ φ0

with the phase constant φ0 giving the angular position
when t is zero:

s

A

s

ωt+φ0

Therefore, the position at time t:

s = A cos(ωt+ φ0)

On the circle, the object has tangential velocity vt = ωA.
Projecting this onto the s-axis gives the velocity of the har-
monic motion:

s
v

ωA

~vt

which is confirmed by calculating the derivative of the dis-
placement:

v =
ds

dt
= −ωA sin(ωt+ φ0)

Because sine can produce no value greater than one, the
maximum speed:

vmax = vt = ωA

The rate of change for any sinusoid is another sinusoid with
the same frequency, shifted left in the graph by one quarter-
cycle. In this case, when the displacement reaches its great-
est magnitude, the acceleration does the same, while the
speed is momentarily zero. When the displacement is zero,
the acceleration is also zero, while the speed assumes its
maximum value.

The acceleration necessary to maintain circular motion
ar = ω2A:

s

ω2A

a

~ar

which also matches the result obtained by differentiation:

a =
dv

dt
= −ω2A cos(ωt+ φ0)

Because s = A cos(ωt+φ0), the acceleration is seen to vary
linearly with the position:

a = −ω2s

Since the equilibrium position se is zero, this is consistent
with Hooke’s law, which states that F = −k∆s for spring
constant k and ∆s = s− se. The negative relationship be-
tween acceleration and displacement shows that a restor-
ing force is at work. Working back from this point, it is
seen that simple harmonic motion can be produced by any
restoring force that varies linearly with displacement.

Equating F = ma with Hooke’s law gives:

a = − k
m
s
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which produces:

ω =

√
k

m
f =

1

2π

√
k

m
T = 2π

√
m

k

From this it is seen that the frequency and period of the
motion are independent of its amplitude.

Expressing the acceleration as a differential equation gives
the equation of motion for simple harmonic motion:

d2s

dt2
= − k

m
s

7.2 Energy of simple harmonic motion

As demonstrated, an object connected to an ideal spring
produces simple harmonic motion after being displaced
from the equilibrium position. If this position is placed
at the origin, then the elastic potential energy:

U =
1

2
ks2 =

1

2
kA2 cos2(ωt+ φ0)

Because v = −ωA sin(ωt+φ0) and ω =
√
k/m, the object’s

kinetic energy:

K =
1

2
mv2 =

1

2
kA2 sin2(ωt+ φ0)

Therefore, its mechanical energy:

E = K + U

=
1

2
mv2 +

1

2
ks2

=
1

2
kA2 sin2(ωt+ φ0) +

1

2
kA2 cos2(ωt+ φ0)

m and k play identical roles in their respective terms. The
object’s mass allows it to store kinetic energy, while the
spring’s elasticity allows it to store potential energy. All
harmonic phenomena are produced by cyclical exchanges
between two such energy forms, and similar terms will be
found in every example of this behavior.

The energy diagram for this system contains a parabolic U
function with its vertex at the origin, where the energy is
entirely kinetic. If −A or A is the initial displacement, the
parabola intersects E at both these points, and the energy
is entirely potential at each of them:

E

−A A

Ue

0

K

Because sin2 α+ cos2 α = 1:

E =
1

2
kA2

This is also seen by calculating E at displacement −A or A,
where there is no kinetic energy. After equating the maxi-
mum kinetic energy with the maximum potential energy:

1

2
mv2

max =
1

2
kA2

solving for vmax gives:

vmax =

√
k

m
A = ωA

which matches the earlier result for maximum speed.

Because:

mv2 + ks2 = kA2

it becomes possible to solve for different variables. For in-
stance, the velocity at s:

v =

√
k

m

(
A2 − s2

)
= ω

√(
A2 − s2

)

7.3 Pendulums

The bob at the end of a perfectly rigid pendulum arm will
trace a circular arc. In the absence of drag, two forces act
on the bob: its weight, and the tension force exerted by the
arm, which opposes the weight’s radial component. If θ is
the angle from the center line to the arm, then the angle
between ~w and the radial line is also θ:
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θ

L

θ

~w

~wt

~T

~wr

s

so that the tangential component:

wt = −mg sin θ

Because ~wt always points toward the equilibrium position,
it acts as a restoring force. In this case, however, it varies
with the angular displacement, not the translational dis-
placement of a spring. If the arm is massless, the tangential
acceleration of the bob:

at = −g sin θ

If s is the displacement along the arc from the equilibrium
position, and if L is the length of the arm, then s = Lθ.
The small angle approximation holds that sin θ ≈ θ when
θ � 1. This allows sin θ ≈ s/L, making the angular dis-
placement approximately translational:

at ≈ −
g

L
s

This matches the acceleration of an oscillating spring. Ex-
tending this to the other findings gives:

ω ≈
√
g

L

which shows the pendulum’s frequency and period to be in-
dependent (for small amplitudes) of the bob’s mass. Much
like k and m in an oscillating spring, g relates the storage
of potential energy to a displacement, while L relates the
storage of kinetic energy to a speed, since a longer arm
produces greater tangential velocity for a given angular ve-
locity.

If the arm is not massless, the motion must be understood
not as a translational motion through a circular path, but
as a rotation of the entire pendulum. If r is the distance
from the pivot to the center of mass, the combined tangen-
tial weight produces torque:

τ = −rwt = −rmg sin θ

Using small angle approximation again:

τ ≈ −rmgθ = −rwθ

so that:

ω ≈
√
rw

I

for small amplitudes. In this case, the moment arm and the
weight relate the storage of potential energy to a displace-
ment, while the moment of inertia I relates the storage of
rotational kinetic energy to a speed.

7.4 Damped oscillation

A damped oscillation is one that decreases in amplitude
over time. Damping is caused by dissipative forces like
friction and drag. At low velocities, drag varies with speed
in a roughly linear manner, so its damping force can be
modeled as:

~D = −b~v

In this context, b is known as the damping constant.
This quantity produces a force when multiplied by a veloc-
ity, so its unit is kg/s.

Simple harmonic motion is produced by a restoring force
like Fr = −ks. If that force is combined with a damping
force, then the net force:

F = −ks− bv = ma

From this it is seen that:

a+
b

m
v +

k

m
s = 0

Expressing this as an equation of motion:

d2s

dt2
+

b

m

ds

dt
+
k

m
s = 0

This is the original equation for simple harmonic motion
with an added ds/dt term to represent damping. Because
the damping is produced by a dissipative force, the oscilla-
tor’s energy is not conserved over time.

After solving for the displacement:

s = e−bt/2mA cos(ωt+ φ0)

This is a sinusoid with an exponentially decaying enve-
lope that gives the greatest possible displacement at each
point:

smax = e−bt/2mA
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The angular frequency:

ω =

√
k

m
− b2

4m2
=

√
ω2

u −
b2

4m2

with ωu representing the undamped angular frequency.
Damping lowers the frequency relative to the undamped
oscillator, but, as before, the frequency remains constant
over time.

A damped oscillator’s time constant:

τ =
m

b

gives the relationship between the mass, which resists the
damping, and the damping constant. Therefore:

smax = e−t/2τA

Because the total energy E varies with the maximum po-
tential energy at each point, and because the potential en-
ergy varies with the maximum displacement:

E =
1

2
ks2

max = e−t/τ · 1

2
kA2 = e−t/τEu

Eu is the energy without damping, which is also the en-
ergy when t = 0. The sign of the exponent is negative, so
smaller τ values produce stronger damping. e−1 ≈ 0.37,
so when t = τ , the oscillator has approximately 37% of its
original energy.

Driven oscillation occurs when an oscillator is subjected
to a periodic external force. The rate at which the force
acts is called the driving frequency, and its effect is rep-
resented by the oscillator’s response curve, which graphs
the amplitude of the resulting oscillation against the driv-
ing frequency. In this curve, a peak will be found at the
oscillator’s natural or resonant frequency f0, which is
the rate at which it would oscillate in the absence of driving
forces. Smaller damping constants produce taller, narrower
peaks.

8 Fluids

A fluid is any substance that flows, including liquids and
gases. In a liquid, molecules are connected by weak bonds
that hold the liquid together while still allowing molecules
to move around each other. Because these molecules are
close together, liquids are largely incompressible. In a gas,
molecules move freely without interacting, except when
they happen to collide. Because these molecules are loosely
distributed, gases are highly compressible.

For an object with mass m and volume V , the mass den-
sity:

ρ =
m

V

The SI unit for mass density is kg/m3.

8.1 Pressure

Given a force ~F perpendicular to some area A, the pres-
sure acting against the area:

p =
F

A

Pressure is a ratio of force to area, not a force itself. The
SI unit for pressure is the pascal, Pa = N/m2.

In a liquid, pressure is produced by gravity, the force of
which distributes mechanically against the bottom and
sides of the container. Although gravity contributes
slightly to the pressure near the bottom of a container full
of gas, most of the pressure in a small container is produced
by thermal effects.

Atmospheric pressure decreases with height. The stan-
dard atmosphere is defined as the average pressure at
sea level:

1 atm ≡ 101, 300 Pa ≈ 14.7 psi

Given a container of unmoving liquid, a column can be
defined that extends from any area A at depth d to the
surface. This column is subject to three forces: a force
p0A due to atmospheric pressure that pushes down from
the top, another force pA that pushes up from the liquid
beneath, and the column’s weight mg. Because the column
is not moving, these forces must balance:

pA = p0A+mg

Because m = ρdA, the liquid’s hydrostatic pressure:

p = p0 + ρgd

so that a change in depth produces a proportional change
in pressure:

∆p = ρg∆d

This applies to liquids because they are mostly incompress-
ible, making ρ constant at all d; the relationships do not
hold for gases. Because the ρgd term varies only with d,
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it follows that a change in pressure at any point produces
an equal change in pressure at all other points, once equi-
librium is achieved; this is called Pascal’s principle. A
contiguous volume of liquid will flow to the same level in
all open areas of a container, regardless of its shape, and
the pressure will be the same at all points within a given
horizontal plane.

Rather than measuring the absolute pressure p that is used
in most calculations, many gauges show the gauge pres-
sure:

pg = p− 1 atm

Zero gauge pressure represents the ambient pressure. The
gauge pressure of the gas in some container can be mea-
sured with a manometer, this being a U-shaped tube, one
end of which is connected to the container, and the other
end of which is open. Within the tube is a dense liquid
such as mercury. The liquid will settle at one level in the
branch that is connected to the container, and at another
in the open branch:

p

p0

h

p0 + ρgh

p0

The pressure at the level of the connected branch is equal
to the gas pressure; the pressure at the same point in the
open branch is equal to the atmospheric pressure, which
presses down on the liquid, plus ρgh, where h is the amount
by which the open level exceeds the connected level. The
pressure at these points is necessarily equal, so the gas
pressure is found to be p0 + ρgh.

Atmospheric pressure can be measured with a barometer,
which is constructed by sealing a tube at one end, submerg-
ing and filling it within a liquid, and then raising the sealed
end above the level of the liquid. If the tube is tall enough,
a vacuum will form at its top. The pressure at the surface
of the liquid matches the ambient pressure, the pressure at
the same point within the tube also matches the ambient
pressure, and yet the pressure at that point is simultane-
ously equal to ρgh, where h is the amount by which the
level in the tube exceeds the open level. The ambient pres-
sure is therefore found to be ρgh. At one atmosphere, a
mercury barometer measures 760 millimeters.

8.2 Hydraulics

A hydraulic lift is constructed by connecting a narrow ver-
tical piston with area AN to a wider one with area AW:

AW

AN

~FN
~FW

h

p0 + FN

AN
p0 + FW

AW

+ρgh

When force ~FN presses down on the narrow piston, the
pressure at that piston’s face is p0 + FN/AN. If force ~FW

presses down on the wider piston, and if h is the verti-
cal distance from the narrow piston to the wider one, the
pressure at the same level within the wider piston must be
p0 + FW/AW + ρgh. This gives:

FN

AN

=
FW

AW

+ ρgh

so that:

FW =
AW

AN

FN −AWρgh

When h is small, the force is multiplied by a value close
to the ratio of the areas. Because the pistons are oriented
vertically, the effect diminishes as the weight of the liquid
in the wider piston increases.

Because liquids are incompressible, displacing a volume in
one piston causes a like volume to be added to the other.
If the narrow piston is depressed by distance dN, the wider
piston must rise by distance:

dW =
AN

AW

dN

This shows in part how energy is conserved by the system;
though the wider piston is subject to and reacts with a
greater force than the narrow piston, the force acts over a
shorter distance. In this vertical orientation, a portion of
the input energy is also stored in the liquid as gravitational
potential energy.
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8.3 Buoyancy

An object submerged in any fluid, whether liquid or gas, is
subject to greater pressure on its bottom surface than on
its top; this difference produces the buoyant force, which
pushes the object up. To calculate the force, consider that
any shape can be modeled as a collection of vertical cylin-
ders. If a given cylinder has height h, then the pressure dif-
ference between its bottom and top ∆p = ρgh. Because the
pressure force F = pA, the amount by which the bottom
force exceeds the top is equal to ρghA, which is itself the
weight of the displaced fluid. This is called Archimedes’
principle. Given a completely submerged object of volume
V :

FB = ρVg

When an object’s average density matches that of the fluid
surrounding it, its weight is exactly canceled by the buoy-
ant force. Such an object is said to have neutral buoy-
ancy.

An object that is less dense will float, with part of its vol-
ume above the fluid level so that the buoyant force exactly
matches the object’s weight. Given an object with volume
Vo and homogeneous density ρo, and given fluid density ρf

and displaced fluid volume Vf :

ρfVfg = ρoVog

Therefore, the ratio of the displaced fluid to the object
volume as a whole:

Vf

Vo

=
ρo

ρf

8.4 Fluid dynamics

In a laminar flow, fluid moves in discrete layers or strands
that do not cross, without producing swirls or eddies, and
the flow rate at any point within the flow is constant over
time. At higher flow rates, the layers and strands begin
to mix, and flow rates change over time, producing tur-
bulent flow. A flow is irrotational if the vector field
representing the flow has zero curl at all points.

The ideal-fluid model offers a simplified description of
motion within fluids. It assumes that the fluid is incom-
pressible and nonviscous, and that the flow is laminar and
irrotational. In this model, the trajectory followed by a
small volume of fluid is called a streamline; a collection
of adjacent streamlines is called a flow tube. Though a

flow tube may vary in shape or cross-sectional area, it con-
tains the same set of streamlines throughout its length. A
flow tube may traverse an open body of fluid, or it may flow
within a chamber or pipe, and passing between these does
not affect the tube unless its cross-sectional area changes.
Given fluid speed v and cross-sectional area A, the volume
flow rate at a particular point:

Q = vA =
∆s

∆t
A =

V

∆t

The SI unit for this quantity is m3/s. The flow rate must
be identical at every point along the tube’s length, so V
must be constant. This is expressed in the equation of
continuity as:

v1A1 = v0A0

with v0 and v1 being the fluid speed at two points, and
A0 and A1 the cross-sectional area at those points. This
requires that the fluid move faster in narrower sections of
the tube.

Because pA = F , a section within any flow tube is subject
to two forces that press against its ends. The force on the
intake has the same direction as the flow, so it performs
positive work on the section equal to:

W0 = F0(∆s)0 = p0A0(∆s)0 = p0V

The force on the outlet opposes the flow, so it performs
negative work. The total work performed on the section
over ∆t:

We = p0V − p1V

If the intake has vertical position y0, and if the outlet has
position y1, the change in gravitational potential energy:

∆U = mgy1 −mgy0

= ρVgy1 − ρVgy0

The change in kinetic energy:

∆K =
1

2
mv2

1 −
1

2
mv2

0

=
1

2
ρVv2

1 −
1

2
ρVv2

0

Equating the work performed on the section with the
changes in kinetic and potential energy gives the energy
equation for the flow:

We = ∆K + ∆U

p0V − p1V =
1

2
ρVv2

1 −
1

2
ρVv2

0 + ρVgy1 − ρVgy0
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This produces Bernoulli’s equation:

p1 +
1

2
ρv2

1 + ρgy1 = p0 +
1

2
ρv2

0 + ρgy0

which shows p + 1
2
ρv2 + ρgy to be constant at all points

within a flow tube. When the vertical position is constant,
this causes an increase in speed to produce a decrease in
pressure. When the velocity is constant, an increase in
gravitational potential energy also produces a decrease in
pressure, which matches the results for hydrostatic pres-
sure at different depths. These findings derive from the
need to conserve energy within the flow tube.

The flow speed of a gas can be measured with a Venturi
tube, which consists of a wide chamber followed by a nar-
row chamber, with the arms of a U-shaped tube connected
to each. The tube contains a quantity of liquid:

p1p0

h

Gas flows through the chambers; because the second cham-
ber is narrower than the first, the gas pressure there is
lower, which causes the level in that arm of the tube to
rise, as in a manometer. If p0 is the pressure in the first
chamber, if p1 is the pressure in the second, if ρ is the den-
sity of the liquid, and if h is the amount by which the level
in the second arm exceeds that of the first:

p1 = p0 − ρgh

By the equation of continuity:

v1 =
A0

A1

v0

After substituting into Bernoulli’s equation, the potential
energy terms can be discarded, since the chambers have
the same vertical position. This produces:

p0 +
1

2
ρv2

0 = (p0 − ρgh) +
1

2
ρ
(A0

A1

v0

)2

Solving for v0 gives:

v0 = A1

√
2ρgh

ρ(A2
0 −A2

1)

Because gas is compressible, it cannot be considered an
ideal fluid. However, this estimate produces adequate re-
sults at speeds much below the speed of sound.

Real fluids are at least somewhat viscous. As a solid object
moves through a viscous fluid, a thin boundary layer of
fluid adheres to it. This layer is nearly still relative to the
surface of the object. At higher speeds, the boundary layer
will separate from the back of the object to form a turbu-
lent, low-pressure region called a wake. The difference in
pressure between this area and the front contributes to the
drag force on the object.

9 Elasticity

Hooke’s law provides a basic model of the force necessary
to stretch an elastic object to a given length. In its general
form:

F = k∆s

For most objects, when F is graphed against ∆s, the force
is seen to vary linearly almost to the end of the elastic
region, which ends at the yield strength, where perma-
nent deformation occurs. The object will not return to its
original shape after being stressed to this point, but it will
continue to resist the force until the ultimate strength
is reached, at which point it will rupture.

In Hooke’s law, the spring constant is specific to the shape
and material of the object. Because the object’s macro-
scopic properties derive ultimately from molecular phenom-
ena, its elasticity at the large scale can be understood by
generalizing about molecular bonds. If a rod with cross-
sectional area A is pulled with force F , the force on each
bond must be proportional to F/A. If the rod has length
s, and if it is stretched by distance ∆s, the length by which
each bond is stretched must be proportional to ∆s/s. As
long as the total force remains within the linear range of
the elastic region, each bond can be modeled as a distinct
spring. Though the exact force and displacement affect-
ing the bonds is unknown, Hooke’s law allows them to be
related with:

F

A
= Y

∆s

s

The constant Y , representing the material’s resistance to
deformation, is called Young’s modulus. Rigid materials
have higher values for Y . The force per area F/A is the
tensile stress affecting the object. Though tensile stress
is mathematically equivalent to pressure, it acts in a spe-
cific direction, so it is often expressed in N/m2 rather than
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pascals. ∆s/s is the strain affecting the object, this being
the relative amount by which it is deformed. As a whole,
the equation shows that the stress necessary to produce a
given strain is equal to the strain multiplied by Young’s
modulus. Strain has no units, so the modulus is expressed
in N/m2, like stress. Young’s modulus is also used when
modeling compressive stress from a single direction. Shear
stress is produced by forces that are parallel to the object’s
cross section, with the resulting strain transforming rect-
angular profiles into parallelograms. This type of stress is
modeled with the shear modulus, which has the same
units as Young’s modulus, and is calculated in the same
way.

Because Hooke’s law gives F/∆s = k:

Y =
F

A
· s

∆s
=

s

A
k

This allows the modulus to be determined by first measur-
ing k.

Where tensile stress pulls an object from a single direc-
tion, volume stress resembles pressure, in that it pushes
an object from all directions. The relative amount ∆V/V
by which the object’s volume decreases is called the vol-
ume strain. Much like tensile stress, volume stress varies
linearly with volume strain:

∆p = −B∆V

V

so that:

B = − ∆p

∆V/V

The constant B, representing the material’s resistance
to compression, is called the bulk modulus. Less-
compressible materials have higher B values. B is negated
relative to ∆p because an increase in pressure decreases the
object’s volume.

10 Matter and temperature

The molecules in a solid are closely packed, and each is
held in place by molecular bonds. In a crystal, molecules
are arranged in a periodic pattern; in an amorphous
solid, they are arranged at random. Solids are nearly in-
compressible.

The molecules in a liquid are joined by weaker bonds that
hold the liquid together without locking the molecules into
place. Liquids are also largely incompressible.

The molecules in a gas are not bonded to each other, and
they rarely interact at all. By volume, gasses are mostly
empty space, so they are highly compressible.

An atom’s atomic mass number is the number of protons
and neutrons it contains; the number is displayed with a su-
perscript before the atom’s chemical symbol. The atomic
mass unit u is defined to be one-twelfth the mass of an
electrically-neutral 12C atom. An atom’s atomic mass is
equal to its mass number multiplied by the mass unit; this
provides a close approximation of the atom’s true mass.
The molecular mass of a molecule is the sum of the
atomic masses for each of its atoms.

One mole of matter contains a number of molecules equal
to the number of atoms in 12 grams of 12C. Avogadro’s
number gives the number of atoms in one mole:

NA ≈ 6.02× 1023 mol−1

From this it is seen that:

1 u ≈ 1.661× 10−27 kg

The molar mass of some substance is the mass in grams
of one mole of that substance. This number is equal to the
number of the molecular mass.

10.1 Temperature

State variables – such as volume, pressure, and tempera-
ture – describe the current state of a system, and are used
to predict its future behavior. When all state variables are
constant over time, a system is in thermal equilibrium.

Temperature is a measure of thermal energy, which con-
sists of kinetic and potential energy at the molecular level.
At absolute zero, there is no atomic motion, so a system’s
thermal energy is zero. The absolute pressure of a gas
in a sealed container increases linearly with its absolute
temperature. Attaching a pressure gauge to the container
produces a constant-volume gas thermometer, which
– after being calibrated at two temperatures – can infer the
ambient temperature associated with any other pressure.

When a solid is heated, its temperature increases until it
reaches the melting or freezing point. Below this point,
the substance is entirely solid; above, it is entirely liquid or
gas. At this particular temperature it might be any com-
bination of solid and liquid, and though it continues to be
heated, the temperature will not rise again until the sub-
stance has completely melted. The temperature then rises
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to the boiling or condensation point, where another
phase change occurs. Temperature does not rise during
phase changes because the incoming energy is consumed
by the breaking of molecular bonds, which builds molecu-
lar potential energy without increasing kinetic energy. The
system’s thermal energy, by contrast, does increase during
phase changes.

The melting and boiling points for any substance vary with
pressure. A phase diagram displays temperature on the
horizontal axis and pressure on the vertical, and within it
shows the three regions where the substance is a gas, liq-
uid, or solid. The lines separating these regions mark the
phase transitions:

T (°C)

p (atm)

0 100 374

0.006

1

218

0.01

STEAM

WATER

ICE

The gas region occupies the lower-right area, while the
upper-left is split between the solid and liquid regions. The
regions meet at the triple point, which is the only com-
bination of temperature and pressure that allows the three
phases to coexist. At pressures below the triple point, the
substance sublimes directly from solid to gas as the tem-
perature increases. In most substances, the solid form is
denser than the liquid, so the phase boundary that rises
from the triple point has a positive slope; this implies that
increasing the pressure eventually causes a liquid to solid-
ify. Because water ice is less dense than liquid water, the
phase diagram for water shows a negative slope. The crit-
ical point is found at the far end of the line separating
the gas and liquid regions. No clear distinction between
gas and liquid exists at temperatures and pressures above
this point; no phase transitions occur, and density varies
continuously as temperature and pressure vary.

Atoms attract each other when they are close, but they
repel each other when they are too close. In the energy
diagram for this interaction, U has an increasingly steep
slope at short distances, showing the strong repulsive force
that prevents solids and liquids from being compressed:

se

U

The function drops to a trough at the equilibrium position,
and then rises to an essentially flat line where the atoms
no longer interact. The ideal gas model derives from
a simplified version of this function, with a vertical line
at the contact point, and zero values everywhere beyond.
This provides a good approximation of real gas behavior,
as long as the density is low and the temperature is well
above boiling.

10.2 Ideal gases

Assume that n moles of a gas in thermal equilibrium are
held by a container of volume V ; the pressure of the gas
is p, and the temperature of the gas is T . Experimentally,
it is seen that pV varies linearly with nT , and the slope of
this variation is the same for gases of any substance. This
is expressed in the ideal gas law:

pV = nRT

where the universal gas constant:

R ≈ 8.31 J/mol K

In a gas, because there are no phase changes, T varies with
the average thermal energy of each molecule, so pV varies
with the energy in the system as a whole.

n is constant in a sealed container, so pV/T = nR is con-
stant as well. This gives:

p1V1

T1

=
p0V0

T0

for all points in time. This is consistent with the notion
that pV and T both vary with the total thermal energy of
the system. The particular change in each variable depends
on the thermodynamic process affecting the system, which
constrains certain variables while leaving others open.

If N is the number of molecules in the container, then
n = N/NA. This allows the ideal gas law to be restated as:

pV = NkBT
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with Boltzmann’s constant giving the gas constant at
the molecular scale:

kB =
R

NA

≈ 1.38× 10−23 J/K

From this it is seen that the gas density, in molecules per
cubic meter:

N

V
=

p

kBT

At standard temperature and pressure, the average dis-
tance between gas molecules is approximately 5.7 nanome-
ters.

10.3 Ideal gas processes

Given a constant quantity of gas in a piston or other con-
tainer, the pressure-volume diagram graphs pressure
against volume, showing how these vary as the system tran-
sitions from state to state. Because pV/T is constant in a
sealed container, temperature is uniquely determined for
each point in the diagram. Technically, the ideal gas law
applies only to systems in thermal equilibrium, and such
systems do not change; for this reason, the ideal gas pro-
cess described by the diagram is imagined to be a quasi-
static process, which proceeds so slowly that each point
can be considered an equilibrium. This makes ideal gas
processes reversible, unlike real-world processes.

In an isochoric process, volume is constant over time,
so that pressure varies linearly with temperature; this is
represented in the pressure-volume diagram with a vertical
line. Heating a constant-volume gas thermometer produces
this type of process.

In an isobaric process, pressure is constant over time, so
that volume varies linearly with temperature; this is rep-
resented with a horizontal line. This process occurs when
a gas-filled piston is heated while being compressed by a
constant force. As the temperature increases, the pressure
increases slightly, producing a net force that expands the
piston and returns it to the equilibrium pressure.

In an isothermal process, temperature is constant over
time, so that total thermal energy is constant, and p1V1 =
p0V0. This is represented with a hyperbolic curve called an
isotherm:

p = nR · T
V

for a given T :

p

V

T0

T2

T1

This process can be produced by slowly compressing a gas-
filled piston while it is cooled at a constant temperature,
so that the work performed on the gas is exactly offset by
the heat lost to the environment. This balance between
work performed on or by the system and heat lost to or
absorbed from the environment is part of any isothermal
process. Unlike isochoric and isobaric processes, an isother-
mal process can theoretically be reversed without changing
the temperature of the heating or cooling medium.

11 First law of thermodynamics

11.1 Ideal gas processes and work

The working substance in a thermodynamic system is
the gas or other material that changes state to perform
work.

A gas-filled piston with internal pressure p and piston area
A exerts force pA on the environment. If the piston ex-
pands by ds, the work performed on the environment is
pA ds = p dV . Conversely, the work performed on the gas:

dW = −p dV

The same result holds for a volume of any shape that ex-
pands through area A with pressure p. Given a process
that begins at V0 and ends at V1:

W = −
∫ V1

V0

p dV

Note that p is likely to vary with V , and if it does, it must
be expressed as a function of V .

Work performed on the system produces a decrease in
volume, represented in the pressure-volume diagram as a
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movement from right to left. Though a low-pressure gas
might seem to pull on the environment, it is impossible for
a gas to pull anything, as its molecules are not bonded.
Any compression must be produced by an outside force
that overcomes the gas pressure; as a result, compression
always represents the performance of work on the gas, not
by it.

For processes that decrease the volume, W = −
∫
p dV is

seen to be the area under the pressure-volume curve; for
processes that increase the volume, W is the negative of
that area. Because dW varies with p at each point, dif-
ferent paths between the start and end points produce dif-
ferent amounts of work. If a set of processes returns the
system to its starting point, then a closed figure is formed
in the diagram. If the volume changes at all, some of the
processes must be increasing the volume, while others must
be decreasing it by a like amount, though possibly at a dif-
ferent pressure. The area within the figure therefore gives
the net work performed on or by the system. If the move-
ment around the figure is clockwise, then the system ex-
pands when pressure is high and contracts when it is low;
this shows that the work performed on the environment is
greater than the work performed on the system, and W is
negative. Conversely, when the movement is counterclock-
wise, the work performed on the system is greater, and W
is positive.

V is constant in an isochoric process, so no work is per-
formed. In an isobaric process, p is constant, so:

W = −p∆V

In an isothermal process, volume and pressure both change.
By the ideal gas law, p = nRT/V , so that:

W = −nRT
∫ V1

V0

1

V
dV = −nRT ln

(V1

V0

)
Because nRT = p0V0 = p1V1, it is also true that:

W = −p0V0 ln
(V1

V0

)
= −p1V1 ln

(V1

V0

)
As will be seen, if this amount of work is performed on the
system, the same amount of energy must be lost as heat if
the temperature is to remain constant.

11.2 Heat

The SI unit for heat is the joule. Historically, the unit
for heat was the calorie, defined as the amount needed to

raise the temperature of one gram of water by one degree
Celsius:

1 cal ≈ 4.186 J

The large calorie, kilogram calorie, or food calorie used to
measure food energy is a different unit, with:

1 Cal = 1000 cal ≈ 4186 J

Heat results from a temperature difference between a sys-
tem and its environment, and, like work, it transfers energy
to or from that system. If W is the work performed on a
system, and if Q is the heat transferred to it:

∆Es = W +Q

It is also true that ∆Es = ∆Em + ∆Et. If Em is constant,
so that neither the kinetic nor the potential energy of the
system as a whole changes:

∆Et = W +Q

This is the first law of thermodynamics. For a system
with constant mechanical energy, the change in thermal
energy is equal to the heat absorbed by the system less the
work performed by the system on its environment.

The specific heat or heat capacity of a substance is the
amount of energy needed to raise the temperature of one
kilogram of the substance by one kelvin. Given specific
heat c and mass M :

∆Et = Mc∆T

This energy can be supplied through mechanical means,
such as mixing, or as heat. By the first law, if no work is
performed on the substance:

Q = Mc∆T

A single material has different specific heat values in its
solid, liquid, and gas forms. As will be seen, the specific
heat of a gas also varies with the process that produces
the temperature change, and with the amount of work per-
formed by that process.

The molar specific heat is the energy needed to raise the
temperature of one mole of the substance by one kelvin.
Given molar specific heat C and molar quantity n:

Q = nC∆T

n varies with M according to the molar mass of the sub-
stance. Therefore, if Mm is the molar mass, in grams:

C =
Mm

1000 g/kg
c
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Molecular bonds must be broken or formed as a substance
changes phase. The heat of transformation is the en-
ergy consumed or released as one kilogram of the substance
undergoes such a change. The heat of fusion Lf gives the
energy associated with a change between solid and liquid,
while the heat of vaporization Lv gives the energy for a
change between liquid and gas.

11.3 Specific heat of gasses

Assume that an isochoric process and an isobaric process
start at the same pressure and volume, and that both end
at different points on the same isotherm:

p

V

T0

T1
isobaric

is
o
ch

o
ri
c

∆T is the same for both processes. Because phase changes
do not occur in an ideal gas, ∆Et varies directly with ∆T ,
making ∆Et the same for each path. Because ∆Et =
W + Q, any variation in Q for the two processes must be
associated with an offsetting variation in W . This is true
for all processes that cross between the same isotherms.

If CV is the specific heat of the gas in the isochoric process:

QV = nCV∆T

No work is performed without a change in volume, so:

∆Et = nCV∆T

This relationship between ∆Et and ∆T holds for all ideal
gas processes, regardless of the particular way in which
they move between isotherms. In the isobaric process:

WP = −p∆V

According to the ideal gas law, pV = nRT . When p is
fixed, this allows p∆V = nR∆T , so that:

WP = −nR∆T

If CP is the specific heat of the gas in the isobaric process:

QP = nCP∆T

Therefore:

∆Et = WP +QP = −nR∆T + nCP∆T

This statement is not true for non-isobaric processes; their
work is not equal to −p∆V , so it cannot be related to the
ideal gas law in the same way.

After equating the two expressions of ∆Et:

nCV∆T = −nR∆T + nCP∆T

and dividing by n∆T :

CP = CV +R

CP and CV represent the heat needed to produce a tem-
perature change. Although ∆Et = nCV∆T , regardless of
the process, it is now seen that the heat necessary to pro-
duce ∆T does depend on the process, and in particular,
the amount of work it performs, here represented by R.

Similarly, two processes that begin and end at the same
points produce the same change in thermal energy. Given
process H that changes volume at a higher pressure, and
process L that does so at a lower pressure:

WH +QH = WL +QL

When the volume expands, work performed on the sys-
tem is negative. Because |WH| > |WL|, this requires that
WH < WL and QH > QL, so the process that performs
more work either absorbs more heat or releases less. When
the volume contracts, WH > WL and QH < QL, so the pro-
cess that receives more work either releases more heat or
absorbs less.

11.4 Adiabatic processes

The first law relates ∆Et to W and Q. In an isothermal
process, the temperature does not change, so W = −Q. In
an isochoric process, no work is performed, so ∆Et = Q. In
an adiabatic process, no heat is exchanged, so ∆Et = W .
This type of process is produced by insulating the system
during the volume change, or by changing the volume so
quickly that there is no time for heat to transfer. Gas
temperature is increased by adiabatic compression, and de-
creased by adiabatic expansion.
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∆Et = nCV∆T , so in an adiabatic process:

W = nCV∆T

Because dW = −p dV :

−p dV = nCV dT

The ideal gas law gives p = nRT/V , so:

−nRT
V

dV = nCV dT

− R

CV

· dV

V
=

dT

T

The specific heat ratio:

γ =
CP

CV

Because R = CP − CV:

R

CV

=
CP − CV

CV

= γ − 1

− R

CV

= 1− γ

Therefore:

(1− γ)
dV

V
=

dT

T

Summing over the volume and temperature ranges:

(1− γ)

∫ V1

V0

1

V
dV =

∫ T1

T0

1

T
dT

(1− γ) ln
V1

V0

= ln
T1

T0(V0

V1

)γ−1

=
T1

T0

And finally:

T1V
γ−1

1 = T0V
γ−1

0

Similarly, because T = pV/nR:

p1V
γ

1 = p0V
γ

0

The process is represented in the pressure-volume diagram
with an exponential curve called an adiabat:

p

V

T0

T1

Given constant k, equal to pnV
γ
n for any n in the process:

p =
k

V γ

Because W = nCV∆T , and because ∆T = ∆(pV )/nR:

W =
CV

R
∆(pV )

As already shown, R/CV = γ − 1, so:

W =
p1V1 − p0V0

γ − 1

12 Kinetic theory

12.1 Mean free path

The molecules in a gas have random velocities. If two
molecules have velocities ~v0 and ~v1, their relative velocity
~vr = ~v0 − ~v1. Using the dot product to square this vector
produces the sum of the squares of its components:

~vr · ~vr = v2
r:x + v2

r:y + v2
r:z

By the Pythagorean theorem, this is the square of the vec-
tor’s magnitude. Following this, the average magnitude
can be calculated as the root-mean-square of the relative
velocity:

(vr)rms =

√
~vr · ~vr

=

√
(~v0 − ~v1) · (~v0 − ~v1)

=

√
~v0 · ~v0 − 2~v0 · ~v1 + ~v1 · ~v1

Because the velocities are uncorrelated, the average of their
correlation ~v0 · ~v1 is zero, producing:

(vr)rms =

√
(~v0 · ~v0) + (~v1 · ~v1) =

√
v2

0 + v2
1
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However, v0 and v1 equal the average molecular velocity v.
Therefore, the average relative velocity:

(vr)rms =
√

2 v

Molecular collisions can be modeled as though each
molecule were a sphere with radius r. Two such spheres
will collide if the distance between their centers is less than
2r, so as each sphere moves over period ∆t at relative speed√

2 v, it traverses a cylinder with radius 2r, and a collision
occurs if the center of another sphere enters that cylin-
der. If the system contains N molecules, and if ∆t is short
enough that no cylinders intersect, the total volume of all
cylinders:

Vc = π(2r)2 ·
√

2 v∆t ·N

= 4
√

2πr2v∆tN

If the system has volume V , the probability that one center
will be within Vc during ∆t:

P =
Vc

V
=

4
√

2πr2v∆tN

V

so that the probability density for an arbitrary point in
time:

P

∆t
=

4
√

2πr2vN

V

The reciprocal of this value is the expected time between
collisions. Multiplying by the average speed then gives the
average distance between collisions, this being known as
the mean free path:

λ =
∆t

P
v =

V

4
√

2πr2N
=

1

4
√

2πr2(N/V )

Note that N/V is the molecular density. In a monatomic
gas, r is approximately 0.05 nanometers.

12.2 Gas pressure

In a stationary volume of gas, the average of the molecular
velocities (vs)avg for any component s is necessarily zero. A
more useful summary can be derived from the root-mean-
square speed, equal to the square root of the average of
the velocity squares:

vrms =
√

(v2)avg

Because v2 = v2
x + v2

y + v2
z :

(vrms)
2 = (v2)avg

= (v2
x)avg + (v2

y)avg + (v2
z)avg

However, these components are equal on average, so that:

(vrms)
2 = 3(v2

s)avg

for arbitrary component s. Conversely, the average of the
square of any component:

(v2
s)avg =

1

3
(vrms)

2

As shown earlier, if one object strikes a much more mas-
sive resting object, and if the collision is perfectly elastic,
the first object will rebound at nearly its original speed.
Because it is so small, a single gas molecule with perpen-
dicular velocity component vc can be assumed to rebound
at velocity −vc after striking the side of its container. If
the molecule has mass m, its change in momentum:

∆p = −2mvc

This momentum change is produced by an impulse, and,
by Newton’s third law, an equal and opposite impulse af-
fects the container side. If Fc is the average force during
the collision, and if ∆tc is the collision length, then this
impulse:

J = Fc∆tc = 2mvc

Therefore, the average force during the collision:

Fc =
2mvc

∆tc

If every molecule is assumed to have perpendicular speed
|vc|, then the half of these that are moving toward the side
will travel ∆s = vc∆tc during ∆tc, and the ones within
∆s of the side will strike it. If the side has area A, the
volume containing these molecules is A∆s. If the system
as a whole contains N molecules in volume V , the number
that will strike the side:

Nc =
A∆s

2

(N
V

)
=
Avc∆tc

2

(N
V

)
The total force from all collisions:

F = NcFc =
Avc∆tc

2

(N
V

)(2mvc

∆tc

)
= mv2

cA
(N
V

)
To produce a more general result, it can be assumed that
vc = (vs)rms for perpendicular component s. Because the
square of this value is (v2

s)avg:

F = m(v2
s)avgA

(N
V

)
=

1

3
m(vrms)

2A
(N
V

)
Dividing by A gives the pressure against the side:

p =
1

3
m(vrms)

2
(N
V

)
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12.3 Gas temperature

For a molecule with mass m and speed v, the translational
kinetic energy:

ε =
1

2
mv2

Because (v2)avg = (vrms)
2, the average of this energy:

εavg =
1

2
m(v2)avg =

1

2
m(vrms)

2

From this it follows that (vrms)
2 = 2εavg/m and:

p =
2

3
εavg

N

V
pV =

2

3
εavgN

By the ideal gas law, pV = NkBT , so that:

εavg =
3

2
kBT T =

2

3
· εavg

kB

for molecules with only translational energy. Note that en-
ergy varies linearly with temperature, as expected. This
supports the assumption that molecular collisions are per-
fectly elastic. If they were not, kinetic energy would de-
crease with each collision, causing the temperature to drop
over time.

By equating 3
2
kBT with 1

2
m(vrms)

2, it is seen that the
molecular velocity in this gas:

vrms =

√
3kBT

m

12.4 Thermal energy and specific heat

A system’s thermal energy includes the translational and
vibrational kinetic energy of the molecules within it, along
with the potential energy associated with stretched or com-
pressed molecular bonds:

Et = Km + Um

The molecules in a monatomic gas have no bonds, and their
kinetic energy is entirely translational, so that:

Et = Km = Nεavg

for a system of N molecules. Therefore:

Et =
3

2
NkBT =

3

2
nRT

By extension:

∆Et =
3

2
nR∆T

But ∆Et is also related to ∆T by the specific heat of the
gas, so:

nCV∆T =
3

2
nR∆T

Therefore, in any monatomic gas, the specific heat during
an isochoric process:

CV =
3

2
R

which is confirmed by experiment.

An independent parameter that partially defines the state
of some system is called a degree of freedom. Together,
the degrees of freedom define the phase space, which en-
compasses all possible states for the system. A molecule’s
translational kinetic energy can be expressed as:

ε =
1

2
mv2

x +
1

2
mv2

y +
1

2
mv2

z = εx + εy + εz

If the molecule is not bonded to others, as in a gas, then its
potential energy is zero; if it is monatomic, its rotational
kinetic energy is zero as well. This gives just three de-
grees of freedom for the storage of energy in a monatomic
gas. The Equipartition theorem states that the ther-
mal energy of a system in thermal equilibrium is divided
equally among its degrees of freedom. Moreover, if energy
varies quadratically with a given degree of freedom, then
the energy associated with that degree:

εQ =
1

2
NkBT =

1

2
nRT

Because εx, εy, and εz vary quadratically with vx, vy, and
vz, it is seen that the thermal energy of a monatomic gas
is equal to 3

2
NkBT or 3

2
nRT , as expected.

The molecules in a solid have three degrees of freedom to
store kinetic energy, along with three to store the potential
energy of compressed or stretched bonds. Because elas-
tic potential energy varies quadratically with displacement,
the thermal energy of a solid :

Et = 3NkBT = 3nRT

By equating this with the specific heat expression, it is
predicted that the specific heat of a solid :

C = 3R

which is close to observed values.



13 HEAT ENGINES AND REFRIGERATORS 40

Diatomic molecules have three degrees of freedom for trans-
lational kinetic energy, and two for rotational energy about
the axes perpendicular to the bond. Kinetic and potential
energy along the bond’s axis would seem to require two
more degrees, but at standard temperatures, quantum ef-
fects prevent energy from being stored this way. Thus, in
a diatomic gas:

Et =
5

2
NkBT =

5

2
nRT

and:

CV =
5

2
R

which is also close to observed values. At lower tempera-
tures, the rotational degrees are lost, and at higher temper-
atures, the two vibrational degrees along the axis become
active.

12.5 Second law of thermodynamics

Pressure and temperature are macroscopic phenomena
that summarize and abstract microscopic events. A given
macroscopic state – such as a particular concentration of
thermal energy within a mass – can be produced by a num-
ber of different microscopic configurations, and entropy is
a measure of that number. Some macroscopic states are as-
sociated with many more configurations than others, and as
the microscopic structure evolves in an essentially random
manner, these states – and the macroscopic phenomena
they produce – become probabilistically inevitable. This
effect is expressed by the second law of thermodynam-
ics, which states that the entropy of an isolated system
never decreases; instead, it increases until thermal equilib-
rium is reached, and then it remains constant.

As a result, when two systems touch, molecular collisions
cause thermal energy to pass from the hotter system to
the cooler one; eventually all degrees of freedom in both
systems have the same average energy, giving both sys-
tems the same temperature. Assume that systems A and
B start at different temperatures. Though the tempera-
tures will change, the total thermal energy must remain
constant:

EAB = EA:0 + EB:0 = EA:1 + EB:1

If the systems have the same specific heat, and if they con-
tain NA and NB molecules respectively, their average ther-
mal energy per molecule at equilibrium:

EA:1

NA

=
EB:1

NB

=
EAB

NA +NB

so that:

EA:1 =
NA

NA +NB

EAB

EB:1 =
NB

NA +NB

EAB

13 Heat engines and refrigerators

The gas in a piston presses outward with force ~Fg. If the
piston is not to be pushed from the cylinder, the environ-
ment must counter with an opposing force ~Fe. During a
quasi-static process, ~Fg = −~Fe, so if WE is the work per-
formed by the gas, and if W is the work performed on it:

WE = −W

This allows the first law of thermodynamics to be restated
as:

Q = WE + ∆Et

This shows that when heat is transferred to the system, ei-
ther work is performed on the environment, or the system’s
thermal energy is increased.

If the gas in a piston is heated, and if the force that com-
presses the piston is decreased as it expands so that pV
remains constant, then, by the ideal gas law, T will also
remain constant. Since ∆Et is zero in this case, the first
law requires that WE = Q, and the process is seen to con-
vert heat to work with perfect efficiency. The process does
not end where it started, however, so eventually it will be
unable to produce more work.

A thermodynamic cycle combines processes in a way
that returns the system to its original state. A thermal
reservoir is a system with a heat capacity so great that
its temperature and thermal energy can be considered con-
stant even after another system transfers heat to or from
it. A heat engine uses a thermodynamic cycle to perform
useful work. During each cycle, it extracts heat QH from
a high-temperature reservoir and exhausts heat QC to a
low-temperature reservoir; note that, contrary to normal
practice, QC represents energy lost by the engine, which
absorbs Q = QH−QC in total. Because each cycle returns
the engine to its original state, ∆Et = 0. Thus, by the first
law:

WE = QH −QC
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The engine’s thermal efficiency is the ratio of useful work
to heat input:

η =
WE

QH

= 1− QC

QH

Typical heat engines have thermal efficiencies of 10% to
40%.

Assume that a particular heat engine proceeds through
three processes: an isobaric process that performs work
by heating a volume of gas, an isochoric process that cools
the gas, and an isothermal process that returns the gas to
its original state:

p

V

(∆V )P

(∆p)V

TT

isobaric

isotherm
al

iso
ch

o
ric

WE

Recall that isochoric processes have constant volume so
that:

W = 0 Q = nCV∆T ∆Eth = Q

isobaric processes have constant pressure so that:

W = −p∆V Q = nCP∆T ∆Eth = Q+W

and isothermal processes have constant temperature so
that:

W = −pV ln
(V1

V0

)
Q = −W ∆Eth = 0

They are not used in this cycle, but adiabatic processes
exchange no heat so that:

W =
p1V1 − p0V0

γ − 1
Q = 0 ∆Eth = W

In the isobaric process, QP = nCP(∆T )P of heat is trans-
ferred to the gas, causing −WP = pP(∆V )P of work to
be performed on the environment. By the ideal gas law,
p∆V = nR∆T , so −WP = nR(∆T )P.

In the isochoric process, no work is performed, and QV =
nCV(∆T )V of heat is exchanged; because (∆T )V and QV

are negative, this represents a release of thermal energy.
The gas is now at its original temperature, but it has less
pressure and more volume. (∆T )V = −(∆T )P, so:

QP +QV = n(CP − CV)(∆T )P = nR(∆T )P

of heat has been absorbed.

In the isothermal process, WT = −nRTT ln(VV/VP) of work
is performed on the gas to compress it, and an equivalent
quantity −QT of heat is released to maintain the tempera-
ture while this happens. At the end of one cycle:

QP +QV +QT = nR(∆T )P + nRTT ln(VV/VP)

of heat has been transformed into:

−WP −WV −WT = nR(∆T )P + nRTT ln(VV/VP)

of work on the environment. As a result:

QP +QV +QT = −WP −WV −WT

as required by the first law.

A refrigerator uses a thermodynamic cycle to move heat
in the direction opposite that predicted by the second law.
In each cycle, it extractsQC of heat from a low-temperature
reservoir and exhausts QH to a high-temperature reservoir,
so that it absorbs Q = QC − QH in total. Like the heat
engine, ∆Et = 0 at the end of each cycle, so that:

W = QH −QC

A refrigerator’s coefficient of performance relates its
cooling effect to the work required to produce the cooling:

K =
QC

W

Because the second law prohibits the spontaneous trans-
fer of heat from a low-temperature reservoir to a high-
temperature one, W is always greater than zero. By exten-
sion, it is impossible to produce a perfectly efficient heat
engine; if such an engine did exist, it could be used to pro-
duce the work required by a refrigerator. The engine would
absorb heat from the high-temperature reservoir, convert
it entirely to work, and the refrigerator would return that
energy back to the reservoir as waste heat, along with a
quantity of heat from the low-temperature reservoir. Taken
as a whole, this system would decrease total entropy, which
is impossible.
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13.1 Brayton cycle

The Brayton cycle is used by gas turbine engines:

WE

p

V

TP TH

TE
TC

pP

pC

QH

QC

At the beginning of the cycle, gas is passed through a com-
pressor, producing adiabatic compression that increases
the gas temperature. The compressed gas flows through a
chamber where it is heated, typically by being mixed with
fuel and ignited, or sometimes with a heat exchanger. The
chamber is open at the other end, so this heating occurs
isobarically. The gas then expands adiabatically through
a turbine to produce work, until the starting pressure is
reached. At this point, the gas is exhausted, or it is cooled
with a heat exchanger before possibly being returned to the
engine. In either case, the cooling occurs isobarically, and
the gas returns to its initial state. Air-breathing jet en-
gines also use this process, but their turbines extract only
enough energy from the gas flow to drive the compressor
and possibly a fan. The remaining energy is left to produce
thrust.

Though the gas temperature is increased by the com-
pressor, actual heating occurs only during the combustion
phase. If TP is the temperature after compression, and TH

that after combustion, the input heat:

QH = nCP(TH − TP)

Similarly, if TE is the temperature after the adiabatic ex-
pansion, and if TC is the starting temperature, the exhaust
heat:

QC = nCP(TE − TC)

Therefore, the thermal efficiency:

ηB = 1− nCP(TE − TC)

nCP(TH − TP)

= 1− TE − TC

TH − TP

pV γ is constant during an adiabatic process. By the ideal
gas law, V γ = (nRT/p)γ , so:

pV γ = p1−γ(nRT )γ

Because nR is constant, p(1−γ)T γ and p(1−γ)/γT are con-
stant as well, giving:

p(1−γ)/γ
C TC = p(1−γ)/γ

P TP

Therefore:

TC =
(pP

pC

)(1−γ)/γ

TP

The pressure ratio:

rp =
pP

pC

relates the maximum pressure to the minimum, so that:

TC = r(1−γ)/γ
p TP

By the same reasoning:

TE = r(1−γ)/γ
p TH

Returning these to the thermal efficiency equation:

ηB = 1−
r(1−γ)/γ

p (TH − TP)

TH − TP

= 1− r(1−γ)/γ
p

= 1− 1

r(γ−1)/γ
p

Therefore, higher pressure ratios convert more of the input
heat to work.

It can be shown that the work performed by one Brayton
cycle:

WE:B = nR
(

1 +
1

γ − 1

)
(TH − TP + TC − TE)

TH−TP and TC−TE give the temperature changes induced
by the two reservoirs.

Some heat engine cycles can be reversed to create refriger-
ators:
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When the Brayton cycle is reversed, it starts, as before,
with an adiabatic compression, but the direction is reversed
so that the compression occurs in the high-volume portion
of the cycle; this increases the temperature without heating
the gas, making it hotter than the high-temperature reser-
voir outside the refrigerator. The gas cools isobarically in
this reservoir before being expanded adiabatically to lower
its temperature below that inside the refrigerator. Finally,
the gas is heated isobarically within the refrigerator; this
cools the interior and returns the gas to its initial state.

In total, W work has been performed on the gas, QC heat
has been absorbed, and QH = QC + W has been released.
Note that, in addition to changing the direction of the
process, it is necessary to change the temperatures of the
two reservoirs. In the engine, heat is transferred from the
high-temperature reservoir to the gas, so the reservoir must
have temperature TH or greater. In the refrigerator, heat is
transferred from the gas to the reservoir, so the reservoir
must have temperature TP or lower. The diagram shows
that TP < TH, so no single reservoir can meet these criteria.
A similar problem affects the low-temperature reservoir.

13.2 Otto cycle

The Otto cycle is used by spark-ignition engines, com-
monly known as gasoline engines:

WE

p
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TH

TE
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VP VC

QH

QC

At the beginning of each two-stroke cycle, a mix of fuel
and air is injected into the piston where it is compressed
adiabatically. The fuel mixture is then ignited by a spark
plug. Because the fuel burns so quickly, there is no time
for the piston to expand, producing an isochoric pressure
and temperature increase. The hot gas expands the pis-
ton adiabatically to its original volume, where an exhaust
value opens, dropping the pressure and temperature iso-
chorically to their initial values. Many engines implement
four-stroke cycles that use the next compression and ex-
pansion strokes to clear exhaust and take up air and fuel,
but this is thermodynamically equivalent to the two-stroke
cycle.

It can be shown that the work performed by one Otto cycle:

WE:O =
nR

1− γ
(TP − TC + TE − TH)

Given compression ratio:

rv =
VC

VP

the cycle’s thermal efficiency:

ηO = 1− 1

rγ−1
v

Higher compression ratios increase efficiency, but they also
produce higher temperatures near the end of the compres-
sion stroke; if the temperature increases too much, the fuel
will ignite on its own, while the piston is still compressing.
Fuels with higher octane ratings can be compressed more
without causing early ignition.
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13.3 Diesel cycle

The Diesel cycle also has two-stroke and four-stroke vari-
ants that are thermodynamically equivalent:

VP

WE

p

V

TP TH

TE

TC

VH

QH

QC

VC

The two-stroke cycle starts by adiabatically compressing a
volume of air, increasing its temperature. Fuel is slowly
added to the hot air, where it ignites spontaneously, pro-
ducing an isobaric expansion. The gas is allowed to expand
adiabatically, and then it is exhausted, lowering the pres-
sure and temperature to their starting values. Because the
gas contains no fuel when it is compressed, higher com-
pression ratios can be used, producing greater thermal ef-
ficiency than other combustion engines.

It can be shown that the work performed by one Diesel
cycle:

WE:D = nR
( 1

γ − 1
(TP − TC + TE − TH) + (TP − TH)

)
Given cutoff ratio:

rc =
VH

VP

the cycle’s thermal efficiency:

ηD = 1− 1

rγ−1
v

( rγc − 1

γ(rc − 1)

)
with rv = VC/VP as in the Otto cycle.

13.4 Carnot cycle

Though some thermodynamic cycles can be reversed to
produce refrigerators, it is also necessary that their high-
temperature reservoirs be decreased in temperature, and

their low-temperature reservoirs increased. However, if a
perfectly reversible engine were imagined to exist, this de-
vice could operate as a heat engine or as a refrigerator just
by changing its direction of operation.

A heat engine extracts QH heat from a high-temperature
reservoir and converts it to −W work and QC waste heat.
If the engine is perfectly reversible, it can also act as a
refrigerator that uses W work to extract QC heat from
the same low-temperature reservoir, and releases QH heat
to the same high-temperature reservoir. If the engine’s
output is used to drive the refrigerator, then QH is ab-
sorbed from the high-temperature reservoir, and the same
amount is released there by the refrigerator; similarly, QC

is added to the low-temperature reservoir, from which the
same amount is then extracted. Taken as a whole, the
system changes neither reservoir.

A reversible heat engine is therefore the most efficient en-
gine possible for a given pair of reservoirs, since a more
efficient engine could produce the same amount of work by
absorbing less heat from the high-temperature reservoir,
and exhausting less to the low-temperature one; when com-
bined with the refrigerator, this would decrease total en-
tropy, which is impossible. The same reasoning shows that
no refrigerator can be more efficient than a perfectly re-
versible refrigerator. Moreover, all reversible engines must
be equally efficient.

To produce a perfectly reversible engine, it is necessary
that the engine be frictionless so that all work performed
by the gas is output as work. Similarly, all input work
must be transferred to the gas without loss. All heat trans-
fers must be reversible as well, but because of the second
law, transfers produced by temperature differences cannot
be reversed. An isobaric expansion proceeds to a high-
temperature, high-volume state by absorbing heat from
a high-temperature reservoir; after this is done, the only
way to return the system to its original low-temperature,
low-volume state is to cool it, and that would require a
change in the reservoir temperature. An isochoric process
proceeds to a high-temperature, high-pressure state in the
same way, and again, this cannot be reversed except by
cooling. Therefore, any heating or cooling must be per-
formed with isothermal processes. These can be reversed
by changing the direction of the work, this determining
whether the gas absorbs heat from the reservoir (as it per-
forms work on the environment) or whether it releases heat
(as work is performed upon it).

An engine that meets these criteria is called a Carnot en-
gine:
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At the start of the Carnot cycle, the gas has temper-
ature TC equal to that of the low-temperature reservoir.
The gas is compressed isothermally to increase its pres-
sure without changing its temperature; as this happens,
QC heat is passed to the reservoir, and WC = QC work is
performed on the gas. Next, it is compressed adiabatically
to raise its pressure again, and to increase its temperature
to that of the high-temperature reservoir, TH. The gas is
allowed to expand isothermally at this temperature, ab-
sorbing QH from the high-temperature reservoir, and per-
forming −WH = QH work on the environment. Finally, it
is allowed to expand adiabatically, performing additional
work as it drops to the starting pressure and temperature.

W = −nRT ln(V1/V0) in an isothermal process, so if VE

is the volume after the adiabatic expansion, and VC that
after the isothermal compression:

QC = WC = −nRTC ln
(VC

VE

)
= nRTC ln

(VE

VC

)
Similarly, if VP is the volume after the adiabatic compres-
sion, and VH is that after the isothermal expansion:

QH = −WH = nRTH ln
(VH

VP

)
TV γ−1 is constant in an adiabatic process, so:

TCV
γ−1

E = THV
γ−1

H TCV
γ−1

C = THV
γ−1

P

and:

VE = VH

(TH

TC

)1/(γ−1)

VC = VP

(TH

TC

)1/(γ−1)

Dividing VE by VC:

VE

VC

=
VH

VP

In general η = 1−QC/QH, so:

ηC = 1− QC

QH

= 1− TC ln(VE/VC)

TH ln(VH/VP)

but VE/VC = VH/VP so:

ηC = 1− TC

TH

This gives the Carnot cycle efficiency, and the maximum
efficiency for any heat engine using reservoirs TC and TH.

It can be shown that the coefficient of performance for a
Carnot refrigerator, and thus the maximum coefficient for
any refrigerator using reservoirs TC and TH:

KC =
TC

TH − TC

14 Waves

Mechanical waves traverse a material medium. A distur-
bance moves some volume of material away from its equi-
librium position, and a restoring force pushes it back. For
water waves, the restoring force is gravity; for waves on
a string, it is the tension force along the string’s length.
Though the wave moves, and though it transfers energy
through the medium, it does not permanently displace any
part of the medium.

There are two types of mechanical wave motion. In a
transverse or shear wave, particles oscillate in a direc-
tion perpendicular to the wave’s travel, as in the waves on
a string. In a longitudinal or compression wave, the
oscillation is parallel to the travel, as when sound passes
through a gas or liquid. Some waves, like those in water,
produce both types of motion.

Oscillations produce displacement within the medium at
a given position and time. In a string, this is the perpen-
dicular displacement of a particle at some position along
the length. Fluid particles do not have fixed positions, but
if some volume is chosen that is large relative to the mean
free path of the particles, and small relative to the wave
motion, then displacement can be understood as the move-
ment of this volume

Given a string of length L and mass m, the string’s linear
density:

µ =
m

L
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As will be seen, the wave speed depends entirely on the
restoring force and the linear density, and not on the am-
plitude, frequency, or shape of the wave. If T is the tension
force within the string, the speed:

v =

√
T

µ

so that v increases with T , and decreases with µ.

A one-dimensional wave can be partially represented with a
snapshot graph, which shows the displacement through-
out the medium at a single point in time:

x

y

t = 0

The wave can also be represented with a history graph,
which shows the displacement over time at a single point
within the medium:

t

y

x = 0
v = 1

If the wave shape is constant over time, each graph will con-
tain a reversed image of the other. The image will be scaled
horizontally according to the wave’s speed, and translated
according to the time or position at which each graph is
fixed:

t

y

x = 1
v > 1

If ∆y is the displacement change over a short interval in
the snapshot graph, the average slope over that interval
will be ∆y/∆x. Because the graphs are reversed relative to
each other, a displacement increase in one will be matched
by a decrease in the other, thus reversing the sign of the
slope in the history graph. Since ∆x = v∆t, this allows:

∆y

∆x
=
−∆y

v∆t

so the slopes at corresponding points in the two graphs are
related by:

∂y

∂x
= −1

v

∂y

∂t

∂y

∂t
= −v ∂y

∂x

Neither graph describes the wave throughout space and
time; though the snapshot captures the wave at every point
in space, it does so only at a particular time, and though
the history quantifies the wave at every point in time, it
does so only at a particular position. For a complete def-
inition, it is necessary to define the wave’s displacement
D as a function of both x and t.

If the wave shape is constant, and if it moves at constant
speed v, then shifting the waveform at time t to the left
by vt yields the waveform as it stood at time zero. Con-
versely, for any t, the displacement at position x matches
the displacement that was vt to the left of x when t was
zero. Therefore, any constant traveling wave must be a
function of a single expression, x− vt. When t is fixed, the
resulting function of x produces a snapshot graph. When
x is fixed, the resulting function of −vt yields a history
graph, with the change in direction being produced by the
negative sign, and the horizontal scaling by v.

14.1 Sinusoidal waves

The wavelength of a periodic waveform:

λ = vT

is the distance traveled during one period. Similarly:

v = λf

As λ increases, greater distances are traveled during each
period, and as f increases, those distances are traversed
more frequently.

Simple harmonic motion produces sinusoidal waves. In a
history graph, the peaks of a periodic waveform are one
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period apart, while in a snapshot graph, the peaks are one
wavelength apart. To produce this type of periodicity, the
snapshot graph must be a function of x/λ. Given ampli-
tude A and starting phase φ0:

D(x, t = 0) = A sin
(

2π
x

λ
+ φ0

)
x/λ = xf/v, so as f increases, the function oscillates more
frequently; as v increases, each oscillation stretches over a
greater distance. Since:

D(x+ λ, t = 0) = A sin
(

2π
x+ λ

λ
+ φ0

)
= D(x, t = 0)

the function is periodic over λ, as expected.

Replacing x with x − vt releases the time constraint, pro-
ducing a traveling wave:

D(x, t) = A sin
(

2π
x− vt
λ

+ φ0

)
= A sin

(
2π
[x
λ
− t

T

]
+ φ0

)
The position x is divided by the wavelength just as the
time t is divided by the period, so this function is periodic
in space over λ, and in time over T .

Just as the angular frequency gives the number of radians
traversed per unit of time:

ω = 2πf =
2π

T

the wave number gives the radians traversed per unit of
distance:

k =
2π

λ

Although k is also used to represent the spring constant,
the two values are unrelated.

Because λ = 2π/k and f = ω/2π:

v = λf =
2π

k
· ω

2π
=
ω

k

and:

ω = vk

so that radians per time is equal to distance per time mul-
tiplied by radians per distance.

Because 2π/λ = k and 2π/T = ω:

D(x, t) = A sin(kx− ωt+ φ0)

The phase of the wave:

φ = kx− ωt+ φ0

so the displacement function can also be written:

D(x, t) = A sinφ

The wave speed is the rate at which a given peak or trough
travels through space. Such a point has a constant dis-
placement as it follows the wave, so it must also have a
constant phase as it follows the wave. If φ is constant, its
time derivative:

dφ

dt
= k

dx

dt
− ω = 0

From this it is again seen that the speed:

v =
dx

dt
=
ω

k

At time t, the phase difference between points xA and
xB:

∆φ = (kxB − ωt+ φ0)− (kxA − ωt+ φ0) = k∆x

= 2π
∆x

λ

This follows from the fact that k is the number of radians
per unit of distance, while ∆x/λ is the number of cycles
within ∆x.

14.2 Wave speed in strings

The waves on a string produce transverse sinusoidal mo-
tion. If the displacement occurs in the y dimension, the
transverse velocity of a particle at position x:

vy =
∂y

∂t
= −ωA cos(kx− ωt+ φ0)

By extension, the acceleration:

ay =
∂vy
∂t

= −ω2A sin(kx− ωt+ φ0)

The acceleration is strongest at the peak or trough of each
cycle. At the peak:

ay:P = −ω2A = −v2
sk

2A

If ∆x is a very short length of string centered around the
peak of one cycle, the net force on that length:

Fy:P ≈ may:P = µ∆x · ay:P = −µ∆x · v2
sk

2A
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Excepting gravity or drag, the only force affecting any seg-
ment is the tension force within the string. If the angle
between the horizontal axis and the tension vectors at ei-
ther end is θ:

θθ

y

1
2
∆x− 1

2
∆x

~Ts~Ts

then this force is equal to the sum of the y components of
the tension vectors:

Fy:P = 2Ts sin θ

Because ∆x is small, θ is also small. One of the small angle
approximations allows sinu ≈ tanu when u� 1, so:

Fy:P ≈ 2Ts tan θ

If the peak is centered around the y-axis, then its displace-
ment is greatest there, and:

yP = A cos(kx)

tan θ gives the slope at 1
2
∆x, yet the slope is also equal to:

dyP

dx
= −kA sin(kx)

so that:

tan θ = −kA sin
(k∆x

2

)
Because ∆x is small, k∆x/2 is also small. Another small
angle approximation allows sinu ≈ u when u� 1, so:

tan θ ≈ −k
2A∆x

2

Therefore:

Fy:P = −k2A∆x · Ts

Equating this with the earlier result for Fy:P gives:

−µ∆x · v2
sk

2A = −k2A∆x · Ts

so that:

µv2
s = Ts and vs =

√
Ts
µ

This tells the speed for a sinusoidal wave. Because any
waveform can be decomposed into sinusoids, and because
the speed depends only on the string tension and the linear
density, all components have the same speed. This makes
the result valid for a string waveform of any shape.

14.3 Speed of sound

Sound produces longitudinal waves within a fluid. Assume
that a wave pulse is traveling from right to left along the
x-axis through a flow tube with cross-sectional area A, and
that it approaches a tube section of length ∆x. If the refer-
ence frame is centered on the pulse, then the section is seen
to be moving at speed v while the pulse remains station-
ary. If the pressure within the tube is p, and if the pressure
inside the pulse is p + ∆p, then, as the section meets the
pulse, force:

F = −∆pA

is exerted on the section. The section’s volume:

V = A ·∆x = A · v∆t

with ∆t being the time for the section to cross any point
before the pulse. If the fluid has density ρ at equilibrium,
the section’s mass:

m = ρAv∆t

The force will produce acceleration ∆v that slows the sec-
tion. Because F = ma:

−∆pA = ρAv∆t · ∆v

∆t
−∆p = ρv∆v

so that:

ρv = −∆p

∆v
and ρv2 = − ∆p

∆v/v

If the tube is divided into a number of like sections, each
will contain the same mass of fluid. Though the wave dis-
turbs the fluid, it does not permanently displace it, so, in
the aggregate, and relative to the pulse, it must travel at
a constant mass flow rate:

v0ρ0A = v1ρ1A

As the force accelerates the section, it also compresses
it, producing volume change ∆V . The original volume
V = Av∆t. Assuming:

∆V = A∆v∆t

relates the acceleration to the volume change in a way that
maintains the mass flow rate. Therefore:

∆V

V
=
A∆t ·∆v
A∆t · v

=
∆v

v
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and:

ρv2 = − ∆p

∆V/V
= B

B is the fluid’s bulk modulus, which in this case relates
the pressure difference within the pulse to the proportional
decrease in the section volume. Any compression or rar-
efaction produced by the pulse is assumed to be adiabatic.

As a result, the speed of sound in a fluid:

v =

√
B

ρ

This is analogous to the finding for wave speed in a string,
and for simple harmonic motion in general, with B or Ts
representing the restoring force that pushes the system to-
ward its equilibrium, and ρ or µ representing the system’s
ability to store mechanical energy, which carries it past that
equilibrium. This result also applies to longitudinal sound
waves in a solid. Sound can produce transverse waves in
solids as well, but those move at a different speed.

The bulk modulus of a gas varies with temperature. pV γ

is constant in an adiabatic ideal gas process, so:

p =
k

V γ

for some constant k. The derivative of pressure with re-
spect to volume:

dp

dV
= −γkV −γ−1

The bulk modulus:

B = −V ∆p

∆V
= −V dp

dV

so that:

B = −V · −γkV −γ−1 = γ
k

V γ
= γp

If n is the number of moles in the volume, and M the molar
mass, then:

ρ =
nM

V

Therefore:

v =

√
B

ρ
=

√
γp · V

nM

Because pV = nRT :

v =

√
γRT

M

so that the speed of sound in an ideal gas increases with
temperature, and decreases with the molar mass of the gas.

14.4 Wave power and intensity

A wave that spreads outward from a point within a plane
is called a circular wave. A wave that spreads outward
from a point in space is called a spherical wave. Wave
fronts are the regions at which the wave crests. These
appear as a set of concentric circles in a circular wave, or
as concentric spheres in a spherical wave, each one wave-
length apart. At a sufficiently great distance from the wave
source, wave fronts resemble parallel lines or planes. In a
three-dimensional wave, these are known as plane waves.
True plane waves do not occur in nature, but they are use-
ful as a simple model.

Because plane waves are identical throughout two of their
dimensions, they are described adequately by the basic dis-
placement function D(x, t). To characterize a circular or
spherical wave, it is necessary to replace the x variable with
r, the straight-line distance to the source. Unlike the wave
fronts in a one-dimensional wave (which are points) the
fronts in a multidimensional wave increase in size as r in-
creases. Because energy is conserved, the amplitude must
decrease over distance, so that A becomes a function of r:

D(r, t) = A(r) sin(kr − ωt+ φ0)

A wave’s power P is the rate at which it transfers energy;
its intensity I is its power per unit of area. If a three-
dimensional wave has surface area a at some distance from
the source, the intensity over that surface:

I =
P

a

Intensity is measured in W/m2. If the distance is r, the
intensity of a spherical wave:

I =
P

4πr2

Because IB/IA = r2
A/r

2
B, the ratio of the intensities at two

distances can be found even if the power is unknown.

A mechanical wave pulse tranfers energy from one part of
the medium to another. The particles in the wave oscillate
transversely, longitudinally, or both, but within either axis,
the motion follows a waveform that can be decomposed into
one or more sinusoids. Each sinusoidal path is an example
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of simple harmonic motion. As already demonstrated, the
mechanical energy of a particle moving this way E = 1

2
kA2,

with k being the spring constant. The wave’s power is a
measure of the rate at which this energy is transferred, so,
in any wave, power and intensity vary with the square of
the amplitude.

More specifically, in a string carrying a transverse sinu-
soidal wave, the transverse velocity of any short segment:

vy =
∂y

∂t
= −ωA cos(kx− ωt+ φ0)

This velocity is momentarily zero at each peak or trough,
and it is greatest where the string crosses the x-axis. If the
segment spans length dx when projected onto the x-axis,
it can be seen to approximate the unstretched, equilibrium
length at every peak or trough, while being stretched to its
greatest extent where it crosses the axis:

dx

dx

x

This shows that the elastic potential energy is also zero at
peaks and troughs, and that it reaches its maximum value
near the axis.

The total mass of the segment varies with its length, so
that dm = µdx for linear density µ. Therefore, the kinetic
energy in the segment:

dK =
1

2
dm · v2

y

=
1

2
µdx · ω2A2 cos2(kx− ωt+ φ0)

Dividing by dt gives the rate at which kinetic energy enters
and leaves the segment. Because dx/dt is the wave speed
v:

dK

dt
=

1

2
µvω2A2 cos2(kx− ωt+ φ0)

Over a whole number of cycles, the average of the square
of cosine is one-half. Therefore:(dK

dt

)
=

1

4
µvω2A2

The potential energy that passes through the segment over
a whole number of cycles must equal the kinetic energy, so

that the average power :

P = 2
(dK

dt

)
=

1

2
µvω2A2

Note that the instantaneous power varies with the phase
of the wave.

As will be seen, the string’s impedance Z =
√
µT . Because

v =
√
T/µ, µv = Z, allowing the power to be expressed in

terms of impedance:

P =
1

2
Zω2A2

14.5 Impedance

When a traveling wave encounters a boundary in the
medium, it may be reflected, or part of the wave’s energy
may be passed through the boundary, leaving the rest to be
reflected. Depending on the type of the wave, the reflection
may also be inverted.

If a string wave meets a perfectly rigid boundary, it will be
reflected. The fixed end of the string does not move, so any
force exerted by the string must be opposed by an equal
and opposite force. If the wave causes the string to pull up,
this force will pull down on the string, and the reflection
will be inverted. As will be seen, reflections are produced
by changes in impedance, which describes a medium’s re-
sistance to harmonic motion; in this case, the wave travel-
ing the low-impedance string encounters an infinitely high
impedance at the rigid boundary, and is completely re-
flected. The wave will also be reflected if the region past
the boundary has a lower impedance. This can be under-
stood by imagining that the string connects to a massless,
frictionless ring that follows a pole in the transverse direc-
tion. Beyond the ring is a massless string. The ring travels
freely, so nothing resists the transverse motion; however,
as the string pulls in the longitudinal direction, an equal
and opposite force pulls back, reflecting the wave from the
zero-impedance region without inverting it.

Sound is also reflected by impedance changes. A flute can
be open at one or both ends. When the sound inside a flute
strikes a closed end, the high-pressure region at each peak
presses against the rigid boundary, producing an equal and
opposite force that reflects the wave. Therefore, although
the material at the closed end has a higher impedance,
the wave is not inverted. Sound is also reflected at the
open end, where the impedance decreases. Impedance is
partly determined by the medium’s bulk modulus, and
although the air inside a flute has the same modulus as
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that outside, it is surrounded by a rigid tube that pre-
vents high-pressure regions from expanding (except axi-
ally) and that similarly impedes the contraction of low-
pressure regions. This causes air inside the tube to re-
sist pressure changes relative to the same air outside, thus
increasing the impedance. When a high-pressure region
is created just outside the flute, it disperses more quickly
than it can inside; this creates a low-pressure region that
passes back into the flute, reflecting and inverting the wave.
So, although string waves are inverted when reflected by
impedance increases, sound waves are inverted when re-
flected by impedance decreases.

Impedance can be defined more precisely by considering
the transverse force necessary to drive a wave from one
end of a string. If T is the string’s tension, and if θ is the
angle between the string end and the x-axis, the force must
equal and oppose the transverse tension component:

Ty = T sin θ

If the wave amplitude is very small, θ will be small as well.
The small angle approximations allow sinu ≈ tanu when
u� 1, so that:

Ty ≈ T tan θ

Because tan θ is the slope at this point:

Ty = T
∂y

∂x

However, as already seen:

∂y

∂x
= −1

v

∂y

∂t

with ∂y/∂t being the transverse velocity vy. Therefore:

Ty = −T
v
vy

Because it varies linearly with vy, and because it acts to
oppose that motion, Ty is seen to be a damping force. The
impedance:

Z ≡ T

v

is the damping constant for that force:

Ty = −Zvy

As will be seen, in addition to defining the force neces-
sary to drive the wave, this defines the force necessary to
absorb the wave without producing a reflection. Because
v =

√
T/µ, it is also true that:

Z =
√
µT

To understand the effect of an impedance change, consider
the behavior of the string wave at a boundary. The dis-
placement of a traveling wave can be expressed as a func-
tion of its phase, x− vt, so that:

D(x, t) = f(x− vt)

If g(s) = f(−v · s), then it can also be expressed as:

D(x, t) = g
(
t− x

v

)
If a source wave gS approaches a boundary from the left,
then the source and the reflection gR will superpose, while
the transmitted wave gT continues on to the right. The
wave speed is determined entirely by the medium, so the
reflection will have the same speed as the source, but an
opposite direction:

DS(x, t) = gS

(
t− x

vS

)
DR(x, t) = gR

(
t+

x

vS

)
Therefore, the combined displacement on the left :

DL(x, t) = gS

(
t− x

vS

)
+ gR

(
t+

x

vS

)
while that on the right :

DR(x, t) = gT

(
t− x

vT

)
Assume the boundary is at x = 0. The string is continuous
at all points, so DL(0, t) = DR(0, t) and:

gS(t) + gR(t) = gT(t)

Note that – by replacing x with zero – a contingent state-
ment DL(x, t) = DR(x, t) that is true only where x = 0 is
transformed into a general statement that is true for any
argument t. This will be used later to make more general
claims about the functions, at points where x is not zero.

The point on the boundary has negligible mass; the net
transverse force must therefore be zero, or the point would
quickly move to a different position that does balance the
forces. Assuming θL is the angle between the x-axis and
the tension ~TL on the left, and θR the corresponding angle
on the right :

~TL

~TR

θR

θL
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the transverse tension components must be equal:

TL sin θL = TR sin θR

If the wave amplitude is again assumed to be very small,
the transverse tension can be related to each slope, so that:

TL

∂DL(x, t)

∂x

∣∣∣∣
x=0

= TR

∂DR(x, t)

∂x

∣∣∣∣
x=0

Differentiating and replacing x with zero again:

−TL

vS

g′S(t) +
TL

vS

g′R(t) = −TR

vT

g′T(t)

−ZL · g′S(t) + ZL · g′R(t) = −ZR · g′T(t)

After negating both sides, and after assuming that the dis-
placements (and therefore the integration constants) are
zero when t = 0, integration produces:

ZL · gS(t)− ZL · gR(t) = ZR · gT(t)

Combining this with the earlier result leads to:

gR(t) = kR · gS(t) gT(t) = kT · gS(t)

with the reflection and transmission coefficients:

kR =
ZL − ZR

ZL + ZR

kT =
2ZL

ZL + ZR

determining the amplitudes of the reflected and transmit-
ted waves in this string. Note that 1 + kR = kT.

Recall that after a perfectly elastic collision, the speed of
objects A and B:

vA:1 =
mA −mB

mA +mB

vA:0 vB:1 =
2mA

mA +mB

vA:0

The reflection and transmission coefficients take the same
form, and in both cases, the relations conserve energy. The
kinetic energy of an object, K = 1

2
mv2, while the average

power of a wave:

P =
1

2
Zω2A2

In the wave, impedance takes the place of mass, while am-
plitude takes that of velocity. The range of outcomes is
also equivalent to those of an elastic collision:

� If ZL � ZR, the reflection retains most of the source
wave’s amplitude, while the transmitted wave is very
small;

� If ZL < ZR, the reflected and transmitted waves are
both smaller than the source;

� If ZL = ZR, there is no reflection, and the transmitted
wave is identical to the source;

� If ZL > ZR, the reflection is smaller than the source,
while the transmitted wave is larger ;

� If ZL � ZR, the reflection is almost as large as the
source, while the transmitted wave has nearly twice
the amplitude.

Note that when ZL < ZR, kR is negative, producing an
inverted reflection.

Because gR(t) = kR ·gS(t) and gT(t) = kT ·gS(t) are general
claims about the gS, gR, and gT functions, t can be replaced
by any argument, including t + x/vS. This works because
the functions do nothing more than map the wave’s phase
(here represented by t) to its displacement. t + x/vS re-
lates the change in phase to the change in position, and as
long as it does that correctly, the phase and displacement
relationships between gS, gR, and gT continue to hold. As
a result:

gR

(
t+

x

vS

)
= kR · gS

(
t+

x

vS

)
Recalling that DR(x, t) = gR(t + x/vS) and DS(x, t) =
gS(t− x/vS):

DR(x, t) = kR ·DS(−x, t)

When the boundary is placed on the y-axis, the reflection’s
displacement at point −x is some fraction of the displace-
ment the source would have if it reached point x.

A similar operation applies to the gT equation. Replacing
t with t− x/vT produces:

gT

(
t− x

vt

)
= kT · gS

(
t− x

vt

)
However, this expression of gS does not match DS(x, t) =
gS(t− x/vS), which uses vS. Therefore:

gT

(
t− x

vt

)
= kT · gS

(
t− (vS/vT)x

vS

)
so that:

DT(x, t) = kT ·DS

( vS

vT

x, t
)

The vS/vT term shows the speed of the transmitted wave
to be vT/vS times that of the source, since displacements
that would occur at vS/vT · x instead occur at x. This is
to be expected, since vT/vS · vS = vT.
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14.6 Light

Light travels at different speeds in different materials. If
c is the speed of light in a vacuum, and if v is its speed
within some material, then the index of refraction or
refractive index for that material:

n =
c

v

This is the reciprocal of the relative speed of light within
the material. As will be seen, the refractive index also af-
fects the amount by which light bends as it passes from
one medium to another. The refractive index of a vacuum
is one, and that of air is very close to one. Liquids and
solids have greater refraction indices than gases, so light
travels more slowly in those materials. Diamond has the
very high refractive index of 2.41. A material’s refractive
index varies slightly for different colors of light. The index
is higher for shorter wavelengths like violet, so those colors
travel more slowly through the material.

The wavelength of visible light varies from 400nm to
700nm. Because its speed changes as light enters differ-
ent materials, and because v = λf , either the wavelength
or the frequency must change. In a vacuum, a given wave
may oscillate at frequency f . As the wave enters a ma-
terial, this oscillation induces a response that propagates
the wave. Because the stimulus is periodic at frequency
f , the response must be periodic at that same rate, so the
frequency must be the same. Only the wavelength changes.

Inside the material, λM = v/f . It is also true that v = c/n,
so:

λM =
c

fn

However, the wavelength in a vacuum λV = c/f , so:

λM =
λV

n

As the refractive index increases, the speed and the wave-
length decrease.

14.7 Doppler Effect

The center of a wave front in a circular or spherical wave is
the point at which the front was generated. When the
source and the medium are both stationary, concentric
fronts are produced. When the source moves, the fronts
are spaced unevenly, creating the Doppler effect:

Note that the speed of the source does not add to that of
the wave. A mechanical wave’s speed is determined by the
bulk modulus and density of the medium, as always.

A stationary source produces wave fronts that are one
wavelength apart. If the medium is stationary, and if the
source approaches an observer at speed vS, then, in the pe-
riod T necessary for a mechanical wave front to travel λ
from its origin, the source has moved vST closer to the ob-
server. The distance between the last front and the next,
as measured between the source and the observer:

λ′ = λ− vST

Because λ = v/f and T = 1/f :

v

f ′
=
v

f
− vS

f

vf = (v − vS)f ′

so that the observed frequency:

f ′ =
v

v − vS

f =
1

1− vS/v
f

If the observer moves at speed vO toward a stationary
source, the wave fronts will remain concentric, but their
speed relative to the observer will increase to v′ = v + vO.
Therefore:

f ′ =
v + vO

λ
=
v + vO

v
f =

(
1 +

vO

v

)
f

If the medium remains stationary while the source and the
observer move toward each other, then, because v = λf :

v + vO = (λ− vST )f ′

Following from this:

f ′ =
v + vO

λ− vST
=

v + vO

v/f − vS/f
=
v + vO

v − vS

f

If the source moves away from the observer, or if the ob-
server moves away from the source, the sign of vS or vO is
reversed.
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The Doppler effect is also observed in electromagnetic
waves; however, these waves have no medium, and the
speed of light is constant relative to any reference frame.
If a light source approaches some observer, Einstein’s the-
ory of relatively can be used to show that the observed
wavelength:

λ′c =

√
c− vS

c+ vS

=

√
1− vS/c

1 + vS/c

14.8 Standing waves

A system is linear if it exhibits both homogeneity and
additivity. If the system is modeled by a function F (x),
homogeneity requires that:

F (a · x) = a · F (x)

while additivity requires:

F (xA + xB) = F (xA) + F (xB)

In physics, these results are known as the superposition
principle. When applied to overlapping waves, the prin-
ciple implies that the displacement at some point is equal
to the sum of the displacements that would be produced
by each wave individually.

Assume that two linear waves with the same amplitude, fre-
quency, and wavelength are traveling in opposite directions.
If their phase constants are both zero, the displacement of
their superposition:

D(x, t) = a sin(kx− ωt) + a sin(kx+ ωt)

Because sin(α± β) = sinα cosβ ± cosα sinβ:

D(x, t) = a
[
(sin kx)(cosωt)− (cos kx)(sinωt)

]
+ a
[
(sin kx)(cosωt) + (cos kx)(sinωt)

]
= 2a(sin kx)(cosωt)

Though the displacement is periodic over x and t, it is not
a function of x− vt, so it is not a traveling wave. Instead,
the superposition produces a standing wave. Where x
and t are joined to produce the single phase of a traveling
wave, two separate phases define the standing wave, one in
space, and one in time. The wave’s general shape in space
is defined by the amplitude function:

A(x) = 2a sin kx

so that:

D(x, t) = A(x) cosωt

A simple traveling wave appears as a sinusoid that moves
along the x-axis. By contrast, a simple standing wave
appears as a stationary sinusoid that varies over time in
amplitude. As cosωt changes in magnitude and sign, the
wave drops from its maximum amplitude of 2a, momentar-
ily disappears, then reappears with its peaks and troughs
reversed, these growing until the amplitude reaches its min-
imum value of −2a. The points where A(x) = 0 are called
nodes, and these points never move, even transversely.
Nodes occur where kx = mπ for any integer m. Because
k = 2π/λ:

x = m
π

k
= m

λ

2

This places a node at every half-multiple of the wavelength.
The points halfway between the nodes are called antin-
odes, and they produce the greatest displacement.

If a string is fixed at both ends, any disturbance will create
reflections with the same frequency and wavelength as the
source. The fixed points impose boundary conditions
that limit the displacement at those points. If the first
point is placed at the origin, and if the string has length L:

D(0, t) = 0

D(L, t) = 0

To meet the second condition at all times, the amplitude
function must produce a node at the end of the string:

2a sin kL = 0

Therefore:

kL =
2π

λ
L = nπ

for some integer n > 0. This allows wavelengths:

λn =
2L

n

and frequencies:

fn =
v

λn
= n

v

2L

The lowest frequency is called the fundamental fre-
quency:

f1 =
v

2L

while the frequencies in general are called harmonics:

fn = nf1
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Note that the fundamental is counted as one of the har-
monics, so the ‘second’ harmonic is 2f1, not 3f1.

The standing wave corresponding to a given n is called a
normal mode of the string. For each such mode, in a
string that is fixed at both ends, n gives the number of
antinodes. Note that the fundamental mode produces only
one antinode, representing half a wavelength.

If the string were open at one end, there would be nothing
to oppose transverse motion at that point. In the idealized
example, where a frictionless ring travels a transverse pole,
any non-zero slope would produce a transverse force that
immediately moved the end to an equilibrium position. Be-
cause the peaks and troughs of the standing wave are the
only points where the slope is zero, they are the only points
where the wave displacement would be stable. Therefore,
an open end will produce an antinode rather than a node.

Sound produces variations in displacement and pressure,
with the phase of the pressure amplitude π/2 behind that of
the displacement. Pressure variations are therefore shifted
forward in the snapshot graph:

Pmax PminPmin

Dmax DminD0 D0 D0

P0 P0

When discussing sound, the word ‘amplitude’ can apply
to the displacement or the pressure of the wave. When
it is associated with displacement, results equivalent to a
string wave are obtained. The closed end of a flute pro-
duces a displacement node, because the air cannot vibrate
longitudinally through the rigid boundary, and a pressure
antinode, as the boundary alternately compresses and rar-
efies air that would otherwise have been displaced. Just as
the open string end cannot support a non-zero transverse
tension, the open flute end cannot maintain a region that
varies from the air pressure outside the flute. The only
points in the wave that are not compressed or rarefied are
the displacement antinodes, so an antinode will be found
at the open end.

If a string or flute is open at both ends, the node at each end
will be replaced with an antinode. In other respects, the
system will match one that is closed at both ends, produc-
ing wavelengths λn = 2L/n and frequencies fn = nv/2L
for every integer n > 0. Each mode will contain n half-
wavelengths.

If only one end is open, the fundamental mode will contain

a node and an antinode, these spanning just one quarter
of a wavelength. Doubling this frequency would produce
a mode with two nodes, however, which is impossible for
this system, so only odd-numbered modes will be supported.
These will produce wavelengths λn = 4L/n and frequencies
fn = nv/4L for odd n. Each mode will contain a combined
number of n+ 1 nodes and antinodes.

14.9 Interference

Interference occurs when waves overlap. A standing wave
is a special form of interference produced by two same-
frequency waves traveling in opposite directions. If two
waves with the same amplitude and frequency travel in the
same direction, and if their sources are xA and xB distant
from some point, their displacements at that point:

DA(xA, t) = a sin(kxA − ωt+ φ0:A)

DB(xB, t) = a sin(kxB − ωt+ φ0:B)

The distance between the sources:

∆x = xB − xA

is called the path-length difference. The phase differ-
ence includes the phase change produced by that length,
plus the difference in starting phases:

∆φ = (kxB − ωt+ φ0:B)− (kxA − ωt+ φ0:A)

= k∆x+ ∆φ0

The waves’ superposition:

D = DA +DB = a sinφA + a sinφB

One of the sum-to-product identities allows:

sinα+ sinβ = 2 cos
(α− β

2

)
sin
(α+ β

2

)
so that:

D = a · 2 cos

[
−(k∆x+ ∆φ0)

2

]

· sin
[

(kxA + kxB)− 2ωt+ (φ0:A + φ0:B)

2

]
=
(

2a cos
∆φ

2

)
sin
(
kxavg − ωt+ (φ0)avg

)
after exploiting the fact that cos−α = cosα.

The result is a sinusoid of the same frequency, with path-
length and starting phases that are halfway between those
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of the sources. Unlike the standing wave, this is a function
of x− vt, so it is a traveling wave. Its amplitude:

A =

∣∣∣∣2a cos
∆φ

2

∣∣∣∣
is greatest when the phase difference is an even multiple of
π. It is zero where the difference is an odd multiple of π.

If two waves with different frequencies have the same am-
plitude and a starting phase of π, their displacements at
x = 0:

DC(0, t) = a sin(−ωCt+ π)

DD(0, t) = a sin(−ωDt+ π)

Because sin(−α+ π) = sin(α), their superposition:

D = DC +DD = a(sinωCt+ sinωDt)

After applying the same sum-to-product identity:

D = 2a cos

[
1

2
(ωC − ωD)t

]
sin

[
1

2
(ωC + ωD)t

]
If ωC and ωD are close, ωmod = 1

2
(ωC − ωD) will be small,

and D will be perceived as a single amplitude-modulated
frequency halfway between the source frequencies:

D =
(
2a cos(ωmodt)

)
sin(ωavgt)

This pattern is called a beat. Because the amplitude
crosses zero twice as it varies from −2a to 2a, the beat
frequency is equal to twice the modulation frequency.

Despite what an observer may see or hear, it is equally
valid to understand D as a low frequency ωmod that is mod-
ulated at a very fast rate ωavg. Any product of two signals
is technically a form of ring modulation, and the sum and
difference of the modulated frequencies:

ωmod + ωavg = ωC |ωmod − ωavg| = ωD

produces the source frequencies, as expected.

15 Wave optics

An obstacle that blocks part of a wave does not cast a
clear shadow; instead, the wave fronts curve after they pass
its edges to fill the shadowed region. This effect is called
diffraction.

15.1 Double-slit experiment

The double-slit experiment uses diffraction to demonstrate
the wavelike nature of light. Two slits approximately
100µm wide are cut into a plate some 500µm apart. Even
if the wave fronts are flat when they reach the plate, they
emerge as two sets of curved fronts, as though each slit
were a new source. These overlap to produce an interfer-
ence fringe, containing alternating bands of constructive
and destructive interference.

Given a screen that is parallel to the plate at horizontal
distance L, distances rA and rB will separate any screen
point P from the slits. Assume that the y-axis origin is
exactly between the slits. If a line is drawn from this point
to P , and if the angle from the horizontal axis to the line
is θ:

h

rA

rB θ L
0

P

then P will have vertical position:

h = L tan θ

If the light source is placed where y = 0, the same wave
fronts will enter each slit at the same time, and the waves
that exit will have the same phase. Each of these waves will
cover every point on the screen, but perfect constructive in-
terference will occur at P only if the path-length difference
is an integer multiple of the wavelength, so that:

∆r = rB − rA = mλ

for integer m. If an arc with radius rA is centered on P , it
will cross through the first slit and near the second, with
the distance to the second slit being ∆r. If vertical distance
d between the slits is very small relative to L, this arc will
form an essentially straight line. Because d is small, dis-
tances rA and rB can be assumed to roughly parallel the
line between the midpoint and P , so that both vary by
angle θ from the horizontal axis:
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rA

rB

θ

θ

d

This makes the angle from the plate to the arc line θ as well.
Naturally, rA and rB are not parallel, but this assumption
allows their length difference to be estimated:

∆r ≈ d sin θ

so that constructive interference occurs where:

d sin θm = mλ

If P is near the midpoint, θ will be small, allowing sin θm ≈
θm and:

θm ≈ m
λ

d

Another small angle approximation gives tan θm ≈ θm, so
the vertical position of this point on the screen:

hm = L tan θm ≈ Lθm = m
λL

d

The midpoint on the screen is equidistant from each slit.
A bright band appears at this point, and at evenly-spaced
points above and below it.

The intensity of a wave varies with the square of its ampli-
tude. If I1 is the intensity at a point on the screen when
only one slit is open, and if a is the amplitude of this light
when it reaches the screen, then I1 = ka2 for some con-
stant k. In general, when two waves of equal frequency
and amplitude are superposed, their combined amplitude:

A =

∣∣∣∣2a cos
∆φ

2

∣∣∣∣
The phase is the same for both waves as they emerge from
the slits, so:

∆φ =
2π

λ
∆r =

2π

λ
d sin θ ≈ 2π

λ
d tan θ =

2π

λ
d · h

L

producing:

A =

∣∣∣∣2a cos
( πd
λL

h
)∣∣∣∣

for position h on the screen. The intensity of this superpo-
sition:

I2 = k · 4a2 cos2
( πd
λL

h
)

Because I1 = ka2, this can be related to the single-slit in-
tensity:

I2 = 4I1 cos2
( πd
λL

h
)

The intensity of the interference fringe therefore varies from
zero to four times that produced by a single slit.

15.2 Diffraction gratings

Diffraction gratings bend different colors of light in dif-
ferent directions, somewhat like a prism. They can be im-
plemented as reflection or transmission gratings.

A reflection grating is created by engraving thousands
of thin, parallel grooves in the surface of a mirror. As
light is reflected, each ridge acts as a separate light source,
producing an interference pattern that reinforces different
wavelengths at different angles.

A transmission grating produces the same type of inter-
ference, but it is made by scoring thousands of thin slits
(typically 1000 per millimeter) within a transparent ma-
terial. If a light source is aligned with the center of the
grating, and if it is distant enough to produce something
like plane waves, the light emerging from each slit will have
the same phase, and an effect much like the double slit ex-
periment will result.

As before, if two adjacent slits are separated by vertical
distance d, and if they vary in distance to P by ∆r, the
paths to the screen can be assumed to be parallel, allowing
∆r to be estimated as d sin θ. The same reasoning applies
to all the slits above and below these two. Only at one
point is the angle exactly θ, and with each iteration, the
slits are d farther from that point. However, if the screen
is sufficiently far from the grating, the accumulated error
will remain small for some distance along the grating.

Constructive interference will occur where ∆r = mλ, so
that:

sin θm = m
λ

d

Before, each angle was assumed to be very small, so that
sin θm ≈ θm. Because d in the grating is much smaller rela-
tive to λ, the angles are relatively large, and the small angle
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approximations cannot be used. The vertical distance to
each point of constructive interference:

hm = L tan θm

The integer m is known as the order of the diffraction.

If one slit allows a straight transit from the source to the
screen, the slits immediately adjacent can be assumed to be
parallel and equidistant, and so on, so that many slits pro-
duce phase-consistent paths to the center. Therefore, the
middle of the screen, where m = 0, is a point of construc-
tive interference for any wavelength. When a combination
of frequencies is directed at the grating, this point displays
a bright band that contains each of these components. The
same frequencies are scattered at different angles above and
below, producing a symmetrical pattern that can be used
to identify components within the source.

If there are n slits, and if the amplitude at the screen pro-
duced by just one of these is a, then the combined ampli-
tude will vary from zero to na. Intensity varies with the
square of the amplitude, so if I1 is the intensity produced
by a single slit, the combined intensity must vary from zero
to n2I1. Because I gives the power per unit area, and be-
cause energy is conserved, the total area of the bands must
decrease as the intensity grows. If it were possible for the
waves to combine without interfering, they would cover the
screen evenly, and their intensity would be nI1 rather than
n2I1. The width of the bands therefore varies with 1/n. As
the number of slits increases, the bands grow brighter and
thinner.

15.3 Single-slit diffraction

Huygens’ principle is a simple geometric model that pre-
dicts diffraction effects in a wave. In this model, each
point on a wave front produces a hemispherical wavelet
that expands only in the ‘forward’ direction. The next
wave front takes the shape of a surface that is tangent to
all the wavelets.

Light passing through a single slit also produces an inter-
ference pattern. If the slit has width d, any point along its
length can be associated with another point, also within
the slit, that is d/2 away:

θ

θ

r

r′
d/2

d

Each point within some pair generates a hemispherical
wavelet that covers the entire screen. For a given point
P , one wavelet travels distance r, while the other travels
r′. If the angle from the center of the slit to P is θ, and
if the paths are again assumed to be parallel, the length
difference:

∆r ≈ d

2
sin θ

If this value happens to be λ/2, the waves in each pair will
destructively interfere. Because every path from the slit to
P is part of a similar pair, that point will be completely
dark.

This approach can be extended to any pair distance that
divides the slit into an even number of lengths. Given pair
distance d/2n, for non-zero integer n, destructive interfer-
ence occurs where:

d

2n
sin θn =

λ

2

sin θn = n
λ

d

When the slit is small, θn must be larger to produce the nec-
essary path-length difference, which is why smaller aper-
tures produce more pronounced diffraction effects. θn also
increases as larger n values divide the slit into smaller frac-
tions. This places higher-order minima at the outside of
the pattern. Note also that, when the wavelength is greater
than the slit width, no non-zero integer n can satisfy this
equation, and the difference is never great enough to pro-
duce perfect destructive interference.

If λ is small relative to d, θ will be small as well, allowing:

θn ≈ n
λ

d

Surprisingly, this resembles the findings for constructive
interference in the double-slit experiment. The difference
results from the geometry of the slits and the way that
d is defined. In both cases, different point distances along
the slit produce different path lengths, which in turn create
varying phase relationships between the paths. In fact, any
phase relationship can be produced if the points along the
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slit are chosen freely. In the double slit, d gives the distance
between the two centers; this produces a whole-wavelength
difference, and constructive interference results. In the sin-
gle slit, d gives the distance between the two edges, and
even if wavelet sources were negligible in size, these would
be the only two points that were d apart, so perfect con-
structive interference does not occur. In the single slit, the
d/2n distances produce destructive interference. The same
distances can be found in the double slit, but at least one
point in each distance pair is blocked by the material be-
tween the slits, so perfect destructive interference does not
occur.

If tan θ ≈ θ, the position on the screen:

yn = n
λL

d

The central maximum spans the distance between the first-
order minima at ±λL/d, so its width on the screen is
2λL/d. This distance grows as the wavelength increases
relative to the size of the slit, so narrower slits produce
wider patterns. Because light wavelengths are very small,
the interference fringes produced by objects of mundane
scale are too narrow to be seen, and light passing through
even a small hole produces a sharp-edged beam. The hole
must be as small as one micron to produce strong light
diffraction that fills the space beyond the barrier, the way
sound fills a room.

Light passing through a circular aperture creates Airy’s
disk, a round central maximum surrounded by concentric
circles. Analyzing this interference pattern is more diffi-
cult, but it can be shown that the angle of the first-order
minimum:

sin θ1 ≈ 1.22
λ

d

This gives the central maximum a diameter of approxi-
mately 2.44λL/d.

15.4 Interferometry

Interferometers use interference to make measurements.
In the Michelson interferometer, light is passed through
a beam splitter that divides the light into two roughly or-
thogonal beams. Each beam encounters a mirror that re-
turns it to the splitter, where the beams divide again. Some
of the light is lost, while the rest joined into a single beam
that is intercepted by a detector:

LA

LB

Because the beams are generated by the same light source,
they start with the same wavelength and phase. They
travel the same distance from the source to the splitter,
and later from the splitter to the detector, but they travel
different distances to and from the mirrors. This creates a
phase difference that produces interference at the detector.
Depending on the precise geometry of the mirrors, the in-
terference could appear as a pattern of concentric rings or
as parallel bands.

If the distance from the splitter to the first mirror is LA,
and that to the second LB, then the path-length difference:

∆r = 2LB − 2LA

Constructive interference will occur at the center of the
pattern when ∆r is an integer multiple of the wavelength,
so that:

LB − LA = m
λ

2

for integer m.

Reduction gears can be used to make precise changes to
one of the distances. As this is done, alternately construc-
tive and destructive interference will occur at the detector,
so that:

C =
2∆L

λ

cycles are observed as the distance changes by ∆L. This
can be used to measure the wavelength very precisely, or
a known wavelength can be used to measure the change in
distance.

This type of interferometer can also be used to measure
the refractive index of a gas. If a container of length d
is interposed between the splitter and one of the mirrors,
one beam will travel distance 2d through the container as
it passes from the splitter to the mirror and back. If the
container is evacuated, and if the wavelength of the light
in vacuum is λV, then:

mV =
2d

λV
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wavelengths will be spanned. If gas is slowly added to the
container, the refractive index will increase, and the light
within will decrease in wavelength. When the gas reaches
the target pressure, its refractive index will be n, and the
light’s wavelength λM will equal λV/n, so that:

mM = n
2d

λV

wavelengths span the container. Therefore:

∆m = mM −mV = (n− 1)
2d

λV

Each increment to ∆m represents one wavelength differ-
ence relative to the count in the vacuum, this producing
one complete cycle of constructive and destructive inter-
ference. Counting these cycles at the detector establishes
∆m, so that the final refractive index:

n = 1 +
λV

2d
∆m

16 Ray optics

The ray model presents light as a collection of rays, each
moving in a straight line away from the source. When it
interacts with matter, a ray may be scattered, causing it
to change direction, or absorbed, so that it stops; otherwise
it will continue in the same direction indefinitely. When
a ray encounters a boundary between materials, it may be
reflected, or it may be refracted, so that it bends in a new
direction. This model is used at larger scales, where any
apertures traversed by the light are much larger than the
light’s wavelength. At smaller scales, with apertures of one
millimeter or less, diffraction effects must be considered.

The ray model can be used to explain the camera obscura,
a darkened room with a small aperture that is open to the
outside. Rays that emanate from objects outside the room
pass through the aperture and illuminate the far wall, pro-
ducing an image. An object near the ground produces rays
that travel up to cross the aperture, and these continue at
this angle until they reach the wall. In this way, the image
is both inverted and flipped left-to-right. The image is also
magnified or reduced relative to the size of the object:

hiho

do di

Rays emanating from the top and bottom of the object pro-
duce one triangle as they travel toward the aperture, and
another after they cross the aperture and travel toward the
wall. These triangles are similar, so their heights hi and ho

vary with their widths di and do in the same way:

hi

di

=
ho

do

Therefore, the camera’s magnification:

m =
hi

ho

=
di

do

If the aperture were small enough, only a single ray could
pass through from any given point on the object. In prac-
tice, a cone of light passes from each such point, causing
the image on the wall to blur. Smaller apertures sharpen
the image by passing narrower cones, but they admit less
light, making it dimmer as well. If the aperture is small
enough, blurring will instead be caused by diffraction.

16.1 Reflection

Very smooth surfaces produce specular reflection, like a
mirror. For any incident ray, there is a plane containing it
that is perpendicular to the reflective surface; when spec-
ular reflection occurs, the reflected ray will also be found
in that plane. Moreover, if the angle of incidence θi is
measured from the incident ray to a line that is normal to
the surface, and if the angle of reflection θr is measured
similarly:

θi θr

then the ray will reflect so that θr = θi. Together, these
guarantees are known as the law of reflection. Unlike
refraction, reflection bends light of all wavelengths at the
same angle.

At the smallest scale, this law also applies to rough sur-
faces, but irregularities on these cause the normal line and
the reflected angle to vary widely from point to point. Be-
cause visible light contains wavelengths between 400nm
and 700nm, irregularities below one micron will produce
specular reflection. Most surfaces, with larger irregulari-
ties, produce diffuse reflection.

Many rays emanate from each point on an object, and these
follow many different paths, allowing the point to be viewed



16 RAY OPTICS 61

from different angles. If some of the rays encounter a mir-
ror, they will reflect in a way that produces equal angles of
incidence and reflection. If the incident rays were reversed
and transposed to the other side of the mirror, they would
precisely align with the reflected rays, just as if they and
the reflected rays originated from an object on that side:

s s

The reflected rays thus produce a virtual image of the
original that can be viewed from different angles, just like
a real object. If the object has distance s from the mirror,
the image will appear to be the same distance from the
other side.

16.2 Refraction

When rays encounter a smooth boundary between one
transparent medium and another, some of the light may be
reflected, and some may be transmitted into the new mate-
rial. If the angle of incidence is non-zero, the transmitted
rays will also change direction at the boundary. This is
called refraction.

As already shown, a material’s refractive index n = c/v,
with v being the speed of light in the material. Each ray
is part of a wave front that is perpendicular to the ray, so
if it enters the new material at an angle, one side of the
front will meet the boundary before the other, and the line
of their intersection will sweep across the boundary as the
front advances. Wherever the front meets the boundary,
a disturbance occurs that transmits the wave to the new
medium. If the second material has a higher refractive in-
dex, the new front will be slower, yet the intersection line
travels at a rate consistent with the higher speed of the first
wave. The new front must therefore be flatter relative to
the boundary so that its intersection line sweeps across at
the same rate. This flattening also produces the decrease
in wavelength that is expected when the refractive index
increases.

The amount of refraction can be determined geometrically.
If two wave fronts are crossing the boundary, then two in-
tersection lines will be produced. Viewing the fronts edge-
on shows these lines as points. The rays that cross these
points produce an irregular quadrilateral that can be di-
vided along the boundary into two right triangles, with
these sharing a hypotenuse:

θL

θH

vH
∆t

v L
∆
t

If vL is the speed of light in the first material, and vH that
in the second, then the lengths of the ray sides will be vL∆t
and vH∆t. The angle of incidence θL and the angle of re-
fraction θH are both measured relative to a line that is
normal to the boundary. It can be shown that θL and θH

also occur within the triangles, so the side lengths:

vL∆t = h sin θL vH∆t = h sin θH

for hypotenuse length h. After solving both for h:

vL∆t

sin θL

=
vH∆t

sin θH

1

vL

sin θL =
1

vH

sin θH

and multiplying by c:

nL sin θL = nH sin θH

This is called Snell’s law, or the law of refraction. Note
that both refraction indices affect the refraction angle, not
just that of the second material. When the ray enters a ma-
terial with a higher refractive index, it bends toward the
normal, but when the refractive index decreases, the ray
bends away from it. The refractive index varies somewhat
with the wavelength of the light, with shorter wavelengths
having higher indices, and therefore moving more slowly
in a given material. The relationship between wavelength
and refractive index is called dispersion, and this is what
causes a prism to split white light into a range of colors.

Snell’s law treats the incident and refraction angles the
same way, so reversing the ray will cause it to refract in a
way the returns it to the original angle:

θL

θH

θL

θH
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Therefore, a ray passing through a sheet with parallel faces
will emerge at its original angle, though it will be displaced
in a direction that follows the sheet. If the sheet has a lower
refractive index, the ray will be shifted forward ; if the sheet
has a higher refractive index, the ray will be shifted back :

θL

θL

When an object in one material is viewed from outside that
material, the surface between them acts as a lens, bending
rays that emanate from the object and changing the angles
at which they are perceived. This produces a virtual image
that is closer to or farther from the viewer than the object
really is:

θV

θJ

s

s′

h

The optical axis is a line passing through an optical sys-
tem, about which the system has rotational symmetry; in
this case, a line perpendicular to the boundary. Assume
the axis passes through the object and the viewer. If a
cone of rays leave the object at angle θJ, the incident angle
at the boundary will also be θJ. If the refraction angle is
θV, then the virtual image appears where that same angle
would have been produced without refraction.

The distance from an object to the center of a lens (in this
case, the boundary) is called the object distance s. The
distance from the lens center to the image is called the
image distance s′. By convention, virtual images are as-
sociated with negative image distances. The incident and
refracted rays meet at distance h from the optical axis. In
both cases, this distance is equal to the slope of the ray
multiplied by the real or virtual object’s distance from the
boundary:

h = s tan θJ h = −s′ tan θV

Equating these allows:

s′ = − tan θJ

tan θV

s

Rays that are almost parallel to the optical axis are called
paraxial rays. Because the pupil is very small relative to
an ordinary viewing distance, only paraxial rays reach the
retina from the object. One of the small angle approxima-
tions allows tanu ≈ sinu when u� 1, so:

s′ ≈ − sin θJ

sin θV

s

But Snell’s law requires that:

sin θJ

sin θV

=
nV

nJ

so the image distance, relative to the object distance:

s′ = −nV

nJ

s

This is true whether the material containing the object has
a higher or lower refractive index. If the index is lower,
refraction will bend the ray toward the normal, and the
object will appear to be farther from the surface than it is.

16.3 Total internal reflection

When light passes from material H to material L, the angle
of refraction is found by solving Snell’s law for θL:

θL = sin−1
(nH

nL

sin θH

)
However, that equation has no solution when nH/nL ·sin θH

is greater than one, or less than negative one. Geometri-
cally, these limits appear because the wavelengths in L are
longer than those in H, and yet the wave front edges in
both materials must align at the boundary. As the inci-
dent angle becomes more oblique, or as the speed of light
in H decreases, the incident fronts intersect the boundary
at smaller intervals. The refraction fronts must produce the
same intervals, and they can be shortened by bending the
ray away from the normal line so that the fronts become
more perpendicular to the boundary. Eventually, however,
the refraction angle θL reaches 90°, and the intervals can
be made no shorter:

L

H



16 RAY OPTICS 63

The incident angle θH that produces this is called the crit-
ical angle:

θc = sin−1
(nL

nH

)
When the incident angle equals or exceeds the critical an-
gle, refraction is no longer possible, and the ray is com-
pletely reflected. This is called total internal reflection,
and it occurs only when light passes from a higher refrac-
tive index to a lower one. When the incident angle is just
below the critical angle, some refraction occurs, but the
light is mostly reflected. As the incident angle decreases,
more light is refracted, and less is reflected:

Total internal reflection allows fiber optic cable to trans-
mit light impulses over hundreds of kilometers with little
intensity loss.

16.4 Scattering

Light may be scattered by dust or droplets suspended in
a transparent medium. Because most such particles are
large relative to the wavelength of light, the light is typi-
cally reflected; if the particles are not colored, this produces
a white haze in the medium, as in fog or clouds.

When light is scattered by particles much smaller than its
wavelength, Rayleigh scattering results. The sun pro-
duces a broad range of wavelengths, and when viewed from
space, it is white. When the sun is high, molecules in
the atmosphere cause Rayleigh scattering, but this is most
likely to affect smaller wavelengths. The sky appears blue
because short wavelengths are scattered horizontally before
reaching the ground. The sun itself looks somewhat yellow
because the blue and purple components have been partly
lost. When the sun is very low, its light travels much far-
ther through the atmosphere, and most of its blue light is
lost before it reaches the viewer. As a result, the sun ap-
pears red, and any scattering that does occur at the end
must affect the remaining wavelengths, producing a red or
orange sky.

16.5 Thin lenses

A focal point is one toward which rays that are parallel
to the optical axis are made to converge, or one from which
they are made to diverge. The focal length is the distance
from the lens surface to a focal point. A focal plane is
one that is parallel to the lens plane, and that contains a
focal point.

Every lens has a lens plane that is centered between its
faces and perpendicular to the optical axis. A lens uses
refraction to bend light rays, and this occurs at the lens
surface, which is some non-zero distance from the plane.
A thin lens is one that is very thin relative to its focal
length, and the object and image distances. In this type of
lens, refraction can be assumed to occur in the lens plane,
which simplifies calculations while introducing relatively
little error.

The faces of a thin lens are almost parallel near the center,
so rays passing through the center will not be bent. If the
lens is assumed to have a zero width, they will not even be
displaced, as normally happens when rays traverse a sheet:

A converging lens is thicker in the middle, so it bends
incoming parallel rays toward its far focal point, on the side
that is away from the light source:

Such a lens also has a focal point on the near side, at the
same distance from the plane. If rays radiate from this
point, they will be bent to produce parallel rays on the far
side.

Every point on an object produces rays that travel in many
directions. When the object distance is greater than the
focal length, a converging lens causes these rays to meet at
a point on its far side. This point is called the real image
of the object point:
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The real image can be located by following a number of
special rays with known geometries:

� Because rays that converge on one focal point corre-
spond to parallel rays on the other side, an incoming
parallel ray must cross the far focal point;

� Conversely, a ray that crosses the near focal point pro-
duces a parallel ray on the far side;

� A ray that crosses the center is unaffected by the lens.

All these rays meet at the real image, and they meet on the
side of the optical axis that is below or above the object
point. Every point in the object plane produces a point
in the image plane, and object points that are closer to
the axis produce image points that are also closer, so the
image as a whole is inverted:

For a given object distance, the points in the image plane
are the only ones where the rays intersect, and thus the
only ones that focus the image perfectly. If a screen is
placed in the image plane, a clear representation of the ob-
ject will be visible. Increasing the focal length causes the
bottom special ray to meet the lens at a steeper angle, and
farther from the center, and it causes the top special ray
to exit at a flatter angle. Both effects increase the image
size, and move the image away from the lens, and these
changes are linear with respect to the focal length.

The center-crossing ray produces similar triangles on either
side of the lens:

h

s h′

s′

If the object and image distances are s and s′, and if the
object and image heights are h and h′:

h

s
=
h′

s′

The lens magnification relates the image height to the ob-
ject height. By convention, both sides of the preceding
equation are negated, so that the magnification:

M = −s
′

s

This allows inverted images to be represented with nega-
tive values. Note that the magnification is associated with
a particular object or image distance; it is determined by
the lens, but it is not a property of the lens itself.

When an object is moved inside the focal distance of a con-
verging lens, the rays on the other side cease to converge.
The special rays can still be used to establish the effect
of the lens; in particular, a ray that would have passed
through the near focal point still produces a parallel ray
on the far side:

Instead of converging, the rays appear to diverge from a
point on the near side. This magnifies the object by pro-
ducing an upright virtual image that is larger and more
distant than the original. This image cannot be projected
onto a screen, however, without a second lens to focus it.
A virtual image is considered to have a negative image dis-
tance, so the magnification equation produces a positive
value, as expected. In this case, increasing the focal length
makes the image smaller and brings it closer to the lens.

A diverging lens is thinner in the middle, and this causes
incoming parallel rays to spread out, as though they di-
verged from a single point on the near side:
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The lens has a similar focal point on the far side, and it
produces a virtual image when the object is outside the
focal length:

The image position is determined much as before:

� Incoming parallel rays appear to diverge from the near
focal point;

� Rays that would cross the far focal point produce par-
allel rays on the far side;

� Rays that cross the center are unaffected.

Increasing the focal length of a diverging lens makes the
image larger and moves it farther from the lens.

Lenses can be placed in series so the real image projected
by one lens becomes the object of another. When this is
done, the second lens can be analyzed as though the pro-
jected image were a physical object.

16.6 Spherical lenses

A lens can be modeled more accurately by understanding
that light refracts at the lens surface, rather than in the
lens plane. Consider a refractive material with a spherical
face on one side. If an object is placed at point P in some
less-refractive medium, then a ray that emanates from P
will bend toward the normal when it reaches the boundary;
if P is outside the focal point, this will return the ray to the
optical axis at point P ′. Every line that is normal to the
spherical surface crosses the center of the sphere at point
C. The angle of incidence θJ is measured relative to this
line, as is the refraction angle θV. Because the refraction

angle is greater than zero, C must lie between the surface
and P ′:

αP

h

C

P ′
R

φ β

θV

d
s′s

θJ

If the angle between the incident ray and the optical axis
is α, and if the angle between the normal and the axis is φ,
then the third angle in this triangle must equal π − φ− α.
That angle and θJ must sum to π, so:

θJ = φ+ α

Similarly, if the angle between the refracted ray and the
axis is β, then the obtuse angle in that triangle must be
π−β− θV. That angle, when added to φ, must produce π,
so:

θV = φ− β

Snell’s law requires that nJ sin θJ = nV sin θV. If the in-
cident ray is paraxial, a small angle approximation allows
nJθJ ≈ nVθV, and:

nJ(φ+ α) = nV(φ− β)

Both triangles have altitude h, which produces a number of
right triangles. If the altitude meets the optical axis at dis-
tance d from the surface, if the object and image distances
are s and s′, and if the sphere has radius R:

tanφ =
h

R− d
tanα =

h

s+ d
tanβ =

h

s′ − d

The small angle approximations allow tanu ≈ u, and the
smallness of the angles also implies that d is very near zero.
Therefore:

φ ≈ h

R
α ≈ h

s
β ≈ h

s′

nJ

( h
R

+
h

s

)
= nV

( h
R
− h

s′

)
and:

nJ

s
+
nV

s′
=
nV − nJ

R

This relates the image distance to the object distance and
the radius. The incident angle is not referenced, so all
paraxial rays that emanate from object point P converge
at real image point P ′.
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In this example, the surface is convex with respect to the
object, and its material is more refractive, but the same
equation can be shown to apply to concave surfaces, and
to those that are less refractive. In general, concave sur-
faces must be represented by negative radii. In cases where
the surface produces a virtual image, s′ is also expected to
be negative.

Earlier it was determined that, when viewed from medium
V through a flat surface, the image distance of an object
within medium J is −nV/nJ · s. As R approaches infinity,
the spherical surface becomes flatter, and (nV −nJ)/R ap-
proaches zero. This causes s′ to approach −nV/nJ · s, as
expected.

(nV − nJ)/R is constant, so as s′ decreases, s must in-
crease. Eventually nV/s

′ comes to equal (nV − nJ)/R, and
the equation can no longer be satisfied by moving the ob-
ject away. At that point, the object is infinitely distant,
and the incident rays are parallel to the optical axis. The
resulting image distance therefore marks a focal point:

s′min =
nV

nV − nJ

R

This is the closest the real image can come to the surface.

Reversing a refracted ray causes it to emerge at its origi-
nal angle, so moving the object to the image position will
produce a real image at the original object position. The
original refraction angle must be greater than zero, how-
ever, so the new object position must be farther from the
surface than C. In fact, it must be farther than s′min, be-
cause the rays on the other side are already parallel when
it is at that point. If the object is placed between the sur-
face and s′min, the refracted rays will diverge, and a virtual
image will be created, as when an object is placed within
the focal length of a converging lens:

C

P

P ′

s′min

A similar constraint affects s. When nJ/s equals (nV −
nJ)/R, the refracted rays become parallel, and s marks an-
other focal point. Decreasing the object distance beyond
this point:

smin =
nJ

nV − nJ

R

causes the rays to diverge from a virtual image.

These findings can be used to understand a lens with two
spherical faces, of radius RA and RB. Assume that the lens
material has refractive index n, while the material around
the lens has an index very close to one, as does air. If the
object P is inside the focal length of the first surface, its
rays will be made to diverge, producing a virtual image P ′

behind the object:

sB

P ′ P ′′

P

s′A

tsA

s′B

RB
RA

If the object and image distances are sA and s′A:

1

sA

+
n

s′A
=
n− 1

RA

The refracted rays approach the second surface just as they
would if the virtual image were a real object within mate-
rial n. The process can therefore be repeated to find the
final image at P ′′.

s′A is measured relative to the first surface, and it repre-
sents a negative number. The second image distance sB

spans a forward interval, so if t is the thickness of the lens,
then sB = t − s′A. If this is also considered to be a thin
lens:

sB = −s′A

Therefore the second object and image distances are related
by:

− n

s′A
+

1

s′B
=

1− n
RB

= −n− 1

RB

Adding this to the previous result:

1

sA

+
1

s′B
=
n− 1

RA

− n− 1

RB

If s and s′ are the distances for the system as a whole, this
produces the thin lens equation:

1

s
+

1

s′
=

1

f
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with the focal length f being determined by the lens
maker’s equation:

1

f
= (n− 1)

[ 1

RA

− 1

RB

]
As expected, s approaches the focal length as s′ approaches
infinity, and vice-versa.

In this example, the first surface is convex relative to the
object, and the second is concave, but the same equation
can be shown to apply to other configurations, if concave
radii are again represented with negative numbers. This in-
cludes diverging lenses, meniscus lenses, which have radii
that are both convex or both concave, and even lenses with
one flat surface, this being represented by an infinite radius.

16.7 Resolution

Because a material’s refractive index increases slightly as
wavelengths get shorter, the focal length of a lens is some-
what shorter for violet light than it is for red. The color-
specific blurring this produces is called chromatic aber-
ration.

When spherical lenses were analyzed in the thin lens equa-
tion, the incident rays were assumed to be paraxial so that
small angle approximations could be used. Unless the ob-
ject is very distant relative to the lens diameter, however,
larger angles will be found near the outside of the lens,
and some rays will be focused on slightly different points.
This blurring effect is called spherical aberration, and it
becomes stronger as the lens diameter increases. Converg-
ing lenses and diverging lenses produce offsetting effects,
so spherical aberration can be largely canceled by placing
these in series.

Light can be modeled as a collection of rays, but it is still a
wave. A lens focuses the waves that pass through it, but it
also acts as an aperture, diffracting the waves. As already
seen, when light passes through a circular aperture, it cre-
ates a circular interference pattern called Airy’s disk. If a
screen is placed in the focal plane, the central maximum in
this pattern has width:

w ≈ 2.44
λf

d

with d being the diameter of the lens. An object that is
very small or very distant would be expected to create a
very small image, but w is not affected by the object size,
it is determined only by the size of the aperture, the focal
length, and the wavelength of the light. w is therefore the

minimum spot size that can be produced by a partic-
ular optical system. It is difficult to produce a lens with
a diameter greater than the focal length, so in practice,
resolution is limited by the wavelength. Though spheri-
cal aberration can be managed by placing lenses in series,
or by using non-spherical lenses, this diffraction effect can
never be eliminated.

Rayleigh’s criterion can be used to determine whether
two object points, such as distant stars, can be resolved
by a given system. The central maximum in Airy’s disk is
surrounded by the first-order minimum, a dark ring where
destructive interference occurs. The angular displacement
of this minimum:

θ1 ≈ 1.22
λ

d

According to Rayleigh’s criterion, two objects of equal
brightness are resolvable if their angular separation is
greater than or equal to θ1. For this reason, θ1 is considered
to be the angular resolution of an optical system.

17 Wave-particle duality and
quantization

17.1 Spectroscopy

An optical spectrometer splits a single ray of light into
distinct spectral components. This can be accomplished
by focusing light onto a diffraction grating, which produces
constructive interference for specific components at specific
angles. The spectrum is then focused onto a detector or a
photographic plate.

Different light sources produce different spectrum types.
When matter is heated until it glows, it produces a con-
tinuous spectrum containing smooth intensity variations
over a range of wavelengths. This type is produced by the
sun or by incandescent lights. When gas is ionized to gen-
erate light within a discharge tube, it produces a discrete
spectrum containing sharp, bright spectral lines at spe-
cific wavelengths.

Different chemical elements produce different spectra when
excited within a discharge tube. Hydrogen produces lines
with wavelength:

λ =
91.19nm

1/m2 − 1/n2
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for integers m and n such that m ≥ 1 and n > m. The
lines where m = 2 are within the visible light range; these
are called the Balmer series. Within each series, the line
spacing progressively decreases as n increases, and as the
wavelength approaches the series limit at λ = 91.19nm·m2.

17.2 X-ray diffraction

X-rays have wavelengths between 0.1nm and 10nm. Usu-
ally these pass through solids without being absorbed or re-
flected, but they sometimes interact with an atom, causing
a portion of their energy to be radiated as a new spherical
wave. The atoms in a crystal are spaced regularly, for the
most part. When x-rays are aimed at a crystal, it is possible
for these spherical waves to interfere constructively, pro-
ducing reflections at particular angles. This phenomenon
is called x-ray diffraction.

If one ray interacts with an atom in any plane of the crystal,
and if another ray interacts with an atom directly below it,
then constructive interference will occur if the path-length
difference between the rays is an integer multiple of the
wavelength. The difference is determined geometrically by
connecting the rays with two perpendicular lines that pass
through the atom in the first plane:

d

d cos θ

θ

This produces two right triangles with hypotenuse d, equal
to the distance between the planes. If the angle of in-
cidence relative to the planes is θ, the adjacent sides will
have length d cos θ, and constructive interference will occur
where:

2d cos θ = mλ

for integer m. This is called the Bragg condition. The
interplanar distance must be somewhat larger than half
the wavelength to produce the necessary path-length differ-
ence. If it is much larger, however, many reflection angles
will result, and they will be difficult to resolve.

If another ray interacts with an atom beside the first, the
same distances will be traveled, and the reflections will
again be phase-consistent:

Atoms in different planes may not be directly above or be-
low each other. An imaginary atom in the plane above
would produce a phase-consistent reflection, however, so
the atom below also produces one, regardless of its posi-
tion in the plane. The reflections ultimately depend only
on λ, θ, and d.

The atoms in one crystal can be divided into many differ-
ent families of planes, each oriented to produce a different
incident angle θ, and each with a different distance d be-
tween the planes. Every such family is capable of producing
reflections.

At angles that do not meet the Bragg condition, a range of
different phases are encountered in different planes, produc-
ing strong destructive interference. Any reflections there-
fore appear as sharp, narrow intensity peaks. This allows
a crystal to be used as an x-ray monochromator, a device
that selects a particular component from a beam contain-
ing multiple wavelengths.

17.3 Photon model of light

Though light is a wave, it sometimes behaves like a stream
of particles. An image projected by a bright light source
shows fine and apparently continuous detail. If light were
entirely wavelike, a dimmer but equally detailed image
would be produced as the light is attenuated, but instead
a speckle pattern emerges. Each dot in this pattern shows
the impact of a single photon, the particle manifestion of
light. According to the photon theory of light:

� Light is composed of massless particles called pho-
tons. In a vacuum, photons travel at the speed of
light:

c ≈ 3.00× 108 m/s

� The energy of a single photon is given by the Planck-
Einstein relation:

Ep = hf

with f being the light’s frequency, and h the Planck
constant:

h ≈ 6.63× 10−34 Js

� The aggregate behavior of a large number of photons
approaches that of a classical wave.
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Paradoxically, light’s wavelike qualities persist even in its
particle manifestation. The double-slit experiment shows
the wavelike nature of light by diffracting the output of a
single light source at two narrow openings. When the light
is relatively intense, smooth gradations are seen in the in-
terference pattern that results. If the light is greatly atten-
uated, a speckle pattern emerges, yet the dots still conform
on average to the original interference pattern. This hap-
pens even when photons traverse the system one at a time,
implying that each single photon passes though both slits
and interferes with itself before reaching the screen.

17.4 Matter waves

Just as light waves sometimes resemble particles, particles
of matter sometimes resemble waves. If a beam of elec-
trons is aimed at a crystal, and if all the electrons travel at
the same speed, they will reflect at angles consistent with
the Bragg condition, for some wavelength. This implies
that the electrons have reflected and superposed as a wave
to produce constructive and destructive interference, just
as light does during x-ray diffraction. If the speed of the
electrons is changed, the reflection angles will change also,
but every angle will again be consistent with the Bragg
condition for some wavelength.

It can be shown that the wavelength of these matter
waves:

λ =
h

p

This is called the de Broglie wavelength. p is the parti-
cle’s momentum, so massive or fast-moving particles have
smaller wavelengths. Particles or objects of any size can
be analyzed as matter waves, but larger objects have wave-
lengths that are too small to produce wave phenomena in
real conditions.

At the quantum scale, the wavelike nature of matter in-
troduces constraints that are not seen in classical systems.
Assume that a particle of mass m is bouncing between the
walls of a container with length L. This is called the ‘parti-
cle in a box’ model. If the collisions are perfectly elastic,
the particle will bounce indefinitely, and its waveform will
overlap itself to produce a standing wave.

As already seen, a standing wave with fixed points at zero
and L has wavelength λn = 2L/n, for some integer n > 0.
From this it follows that:

h

pn
=

2L

n

so that:

pn =
( h

2L

)
n

The particle’s momentum is therefore quantized by incre-
ments that grow larger as the container becomes smaller.
Because kinetic energy E = p2/2m:

En =
(h/2L)2n2

2m
=

h2

8mL2
n2

so the particle’s energy is also quantized. n is called the
quantum number, and En is the energy level of the
particle. The energy quanta become smaller as m and L
increase.

The standing wave can be no less than half a wavelength
long, so n can be no less than one, and the particle’s kinetic
energy cannot be less than E1. As a result, the particle can
never be at rest. The energy level can be expressed relative
to this least energetic state:

En = n2E1

18 Electric charge

An atomic nucleus is around 10−14 m in diameter. Sur-
rounding the nucleus is an electron cloud with a diam-
eter of approximately 10−10 m. Electrons are often said
to ‘orbit’ the nucleus, but wave-particle duality prevents
them from following specific trajectories over such a small
distance.

Electric charge is a property of protons and electrons,
and is found nowhere else. The proton has a mass of
1.67 × 10−27 kg, and it carries a positive charge, known
as the fundamental unit of charge:

e = 1.60× 10−19 C

The electron has a much smaller mass of 9.11 × 10−31 kg,
but it carries an equal negative charge, −e. As will be
seen, every charge produces electrostatic forces that repel
like charges and attract opposite ones. A charge’s effect on
other charges is described by its electric field.

An object’s charge is determined solely by the number of
protons Np and electrons Ne it contains:

q = (Np −Ne)e

Charge is therefore quantized. An object with no net charge
is electrically neutral.
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Protons are not readily added to or removed from nuclei,
so objects become charged by gaining or losing electrons.
The gain or loss of electrons by a single atom is called
ionization. The law of conservation of charge holds
that charge cannot be created or destroyed, it can only be
transferred between objects.

The electrons in the outer shell of an atom are called va-
lence electrons. In metals, valence electrons are loosely
bound to their nuclei. This creates a ‘sea of electrons’
around the positively-charged ion cores that contain the
nuclei and non-valence electrons. The aggregate movement
of charges through a material is called current. A charged
particle that physically moves is called a charge carrier.
In metals, conduction electrons serve as charge carriers,
and their free movement makes metals electrically conduc-
tive. If a metal is heated until it glows, it will actually emit
these electrons, a process called thermal emission. Ionic
solutions are also conductive, but their charge carriers are
ions. It is not necessary for any charge carrier to travel
the full length of the conductor. Most carriers travel only
a short distance, advancing the charge incrementally and
causing other carriers to be displaced in turn.

The valence electrons in an insulator are tightly bound to
their nuclei. An insulator’s surface can be rubbed to pro-
duce a charge, particularly if either material contains com-
plex organic molecules, which are easily broken to produce
molecular ions. The charge cannot move, so it remains on
the surface, in the area that was rubbed.

Charges propagate very quickly in a conductor, and an iso-
lated conductor soon reaches electrostatic equilibrium,
where the net force on every charge is zero, and all charges
are at rest. If the object contains more electrons than pro-
tons, or vice-versa, these excess charges will move away
from each other, and, as the conductor reaches equilibrium,
they will spread across its surface.

If a charged object touches an uncharged conductor, the
charge will be shared between them, at least partly dis-
charging the first object. A conductor that is grounded
shares its charge with the earth, which can absorb a charge
of any practical size. Humid air is a poor conductor, but
it will discharge an object over time.

If a charged object is placed near an uncharged conductor,
some opposite charges in the conductor will be drawn to-
ward the object, and some like charges will be pushed away.
This is called charge polarization. The object must not
touch the conductor or it will be discharged. The force that
attracts opposite and repels like charges decreases with
distance. Because the opposite charges are closer to the
charged object, this creates a polarization force that at-

tracts the conductor, even though it is electrically neutral
as a whole.

If a charged object is used to polarize a neutral conductor,
and if the opposite side of the conductor is momentarily
grounded, the excess charge on that side will be discharged.
When the object is moved away, the conductor will be left
with a net charge opposite that of the object. This is called
charge by induction.

Insulators cannot be polarized in the aggregate because
they do not contain mobile charge carriers. Individual
atoms can be polarized by displacing their electron clouds
in one direction and their nuclei in the other. Two op-
posite and slightly separated charges are called an elec-
tric dipole, and these also produce a polarization force.
Placing a charged object near an insulator creates induced
dipoles. Water, by contrast, has a molecular structure that
acts as a permanent dipole. Because electrostatic force
decreases with distance, the near charges in the dipoles
attract slightly more than the far charges repel, and the
object as a whole is pulled toward the charge.

Like other gases, air is an insulator, but it normally con-
tains small numbers of electrons that have been freed by
background radiation. In the presence of a strong electric
field, these can accelerate to a high velocity before strik-
ing other molecules. In air, if an electron’s kinetic energy
is 2.0 × 10−18 J or more, another electron will be freed by
the collision, then both will be accelerated again, poten-
tially yielding an exponential proliferation of charge carri-
ers. This is called electrical breakdown, and it allows
gases to conduct electricity. When the free electrons rejoin
the ionized nuclei, they emit light. Arcing and lightning
are both examples of electrical breakdown, and discharge
tubes use it to produce light. Other electrical breakdown
processes can occur in solids and liquids.

18.1 Coulomb’s law

A point charge is an idealized charged object. It has
charge and mass, but no size. Two objects can be repre-
sented with point charges if they are both much smaller
than the distance that separates them.

Given two static point charges qA and qB, separated by dis-
tance r, the magnitude of the electrostatic force acting
on either is given by Coulomb’s law:

F =
K|qA||qB|

r2
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K is the electrostatic constant:

K ≈ 8.99× 109 Nm2/C2

The force is directed along the line that joins the points,
with opposite charges attracting, and like charges repelling.
The SI unit of charge is the coulomb, C. Though
Coulomb’s law applies specifically to static charges, it ap-
proximates the force between moving charges if their rela-
tive speed is much less than the speed of light.

As will be seen, electric flux describes the strength of the
electric field passing through a surface. A medium’s per-
mittivity determines the amount of charge needed to pro-
duce flux, with lower permittivity values producing greater
amounts. The lowest possible permittivity is the vacuum
permittivity, also called the permittivity of free space, the
permittivity constant, or the electric constant :

ε0 =
1

4πK
≈ 8.85× 10−12 C2/Nm2

This constant allows Coulomb’s law to be expressed as:

F =
1

4πε0
· |qA||qB|

r2

18.2 Electric fields

Though the elements in a charge pair interact to produce
the electrostatic force, it is common for one to be desig-
nated as the source charge. Its contribution is repre-
sented as an electric field that can be combined with
another charge to determine the force. If the source is a
point charge Q at the origin, the field:

~E =
1

4πε0
· Q
r2
r̂

Electric field strength can be measured in N/C, or, as will
be seen, in V/m. A typical field strength inside a current-
carrying wire is 10−2 N/C. Near the earth’s surface, the
strength may be 102 − 104 N/C. Electrical breakdown in
air occurs near 3× 106 N/C.

Given a second charge q within ~E, the force on q:

~F = q ~E

If Q is positive, the field will point away from the origin,
like r̂. If q is also positive, the direction of ~F will match
that of ~E, and the charges will repel, as expected. If ex-
actly one of the charges is negative, the field strength will
be negative, and ~F will point toward the origin. In gen-
eral, ~E gives the direction of the force exerted on a positive
charge, while E correlates with the magnitude of that force.

Though dipoles are neutral as a whole, they do produce
electric fields. Assume that dipole charges q and −q are
separated by distance s, and that they lie along the y-axis,
with the dipole’s center at the origin. If q is above −q, a
positive charge that is itself above q will be repelled by the
positive pole more than it is attracted by the negative, and
one below −q will be attracted more than repelled. There-
fore, the field will point up wherever the y-axis is above s/2
or below −s/2. It will point down between those points.

When charges combine to produce a field, the field value at
any point is equal to the vector sum of the values produced
by the various charges. Along the y-axis, each vector has
only one spatial component, so the vector sum can be rep-
resented with a single number. For points on the line and
outside the dipole, the total field strength:

Ea:dip =
q

4πε0

[ 1

(y − 1
2
s)2
− 1

(y + 1
2
s)2

]
=

q

4πε0

[ 2sy

(y − 1
2
s)2(y + 1

2
s)2

]
Note that this gives the length of the field vector. When
that length is positive, ~E points away from the source
charges, just as r̂ does. When it is negative, ~E is reversed
relative to r̂.

If the dipole length s is very small relative to the charge
distance y, the denominator approaches y4, giving:

Ea:dip ≈
1

4πε0
· 2sq

y3

The dipole moment ~p represents the polarity or sepa-
ration of charge in a dipole. It points from the negative
charge to the positive, and it has magnitude:

p = sq

measured in Cm. Because the field along the axis and out-
side the dipole always points from the negative end to the
positive, the direction can be indicated by ~p, and the signed
value y can be replaced with r, the unsigned distance from
the center of the dipole. Therefore, the charge along the
dipole axis:

~Ea:dip =
1

4πε0
· 2~p

r3

This would not produce a correct direction or magnitude
between the charges, but it has already been assumed that
r is far outside the dipole. Because each charge is partially
canceled by the other, the field strength decreases with the
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cube of the distance, rather than the square, as it would for
a point charge.

Consider the perpendicular plane that bisects the dipole.
If a given point on this plane is assumed to lie along the
x-axis, the field at that point can be divided into x and y
components:

y

x

1
2
s

~Eq
~E−q

~Ep:d

d

−q

q

θ

The point is equidistant from each charge, so the x com-
ponents cancel, the y components combine, and the field
points down everywhere in the plane.

The point, the origin, and charge q combine to form a right
triangle with hypotenuse d. The strength of the q field:

Eq =
1

4πε0
· q
d2

If θ is the angle between the hypotenuse and the x-axis,
the y component of the q field:

Ey:q = Eq sin θ

Because:

sin θ =
1

2
s
/
d and d =

√
x2 +

(1

2
s
)2

Ey:q can be expressed in terms of s and x:

Ey:q =
1

4πε0
· q

x2 + ( 1
2
s)2
·

1
2
s√

x2 + ( 1
2
s)2

Charge −q produces an equal y component, so the dipole
field strength as a whole, throughout the bisecting plane:

Ep:dip =
1

4πε0
· sq[
x2 + ( 1

2
s)2

]3/2

If s is again assumed to be very small relative to x, and if
x is replaced with the distance to the dipole center, then
the charge in the plane that bisects the dipole:

~Ep:dip ≈ −
1

4πε0
· ~p
r3

The value is negated because ~p points toward the positive
charge, yet the field in this plane points down.

A field’s structure can be visualized with field lines that
show its direction within a plane containing the charges:

Each line starts at a charge. It follows the field’s direc-
tion, and it leads eventually to another, opposite charge,
or away from the charges and to infinity. A tangent at any
point shows the field’s direction. Since there is only one
direction at such a point, the lines can never cross. The
lines are marked with arrowheads that point away from the
positive charge and toward the negative. The line count in
a particular area can be used to give a rough indication of
the field strength.

18.3 Uniform charge distributions

Consider a thin rod bearing charge Q that is uniformly
distributed over its length. Within the perpendicular plane
that bisects the rod, the field can be calculated much as
it was for the dipole. If the rod is aligned with the y-
axis and centered on the origin, any point in the plane can
be assumed to lie along the x-axis. Because the charge is
uniform, the rod can be divided into a number of small
sections, each carrying charge ∆Q. Every section above is
matched by another below that is the same distance from
the plane. Because these bear the same charge, their y
components cancel, and their x components add. Sum-
ming the x component for each section gives the field as a
whole.

The section at yi combines with the origin and the plane
point to form a right triangle with hypotenuse di. If the
section acts as a point charge, and if θi is the angle at the
point, the x-component of the section’s field strength:

Ex:i =
1

4πε0
· ∆Q

d2
i

cos θi

To integrate over the rod length, it is necessary to express
the function in terms of y. Because cos θi = x/di and
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di =
√
x2 + y2

i :

Ex:i =
1

4πε0
· ∆Q

x2 + y2
i

· x√
x2 + y2

i

=
1

4πε0
· x∆Q

(x2 + y2
i )

3/2

Summing to produce the magnitude of the entire field:

Ep:rod =
1

4πε0

∑
i

x∆Q

(x2 + y2
i )

3/2

∆Q must also be related to y. Given rod length L, the
linear charge density:

λ =
Q

L

so that ∆Q = λ∆y. Therefore:

Ep:rod =
λ

4πε0

∑
i

x∆y

(x2 + y2
i )

3/2

=
λ

4πε0

∫ 1
2
L

− 1
2
L

x

(x2 + y2)3/2
dy

This integral can be solved with trigonometric substitu-
tions. If u = arctan(y/x), then y = x tanu and dy =
x sec2 udu:∫ b

a

x

(x2 + y2)3/2
dy =

∫ y=b

y=a

x2 sec2 u

(x2 + x2 tan2 u)3/2
du

=

∫ y=b

y=a

x2 sec2 u(
(x2)(1 + tan2 u)

)3/2 du

=

∫ y=b

y=a

x2 sec2 u

x3 sec3 u
du

=

∫ y=b

y=a

1

x
cosu du

=
1

x
sinu

∣∣∣y=b

y=a

arctan(y/x) returns the angle at the point, so it turns out
that u = θ. Because sin θ = y/

√
x2 + y2:

Ep:rod =
λ

4πε0
· y

x
√
x2 + y2

∣∣∣ 12L
− 1

2
L

=
λ

4πε0
· L

x
√
x2 + ( 1

2
L)2

Finally, λL = Q, so the field strength in the plane that
bisects the rod, at distance r from the rod’s center:

Ep:rod =
1

4πε0
· Q

r
√
r2 + ( 1

2
L)2

This can be used to determine the field around a straight
line of charge with infinite length:

Eline =
1

4πε0
· lim
L→∞

Q

r
√
r2 + ( 1

2
L)2

=
1

4πε0
· Q

r · 1
2
L

=
λ

2πε0r

This is a good approximation for the field strength around
a straight wire, except near the ends. As will be seen, the
same result can be produced much more easily using Gauss’
law.

Consider the field along the axis passing through a ring
of charge with radius R. If the ring is centered on the
origin within the yz plane, each point on the x-axis has
the same distance d from every point on the ring. Because
the field produced by a given ring section is balanced by
the section opposite, the y and z components cancel. The
x component:

Ex:i =
1

4πε0
· ∆Q

d2
cos θ

=
1

4πε0
· ∆Q

x2 +R2
· x√

x2 +R2

so that:

Ea:ring =
1

4πε0
· x

(x2 +R2)3/2

∑
∆Q

∆Q is constant, so the sections can be summed without
integration. At distance r from the origin, the axial field
strength for the ring as a whole:

Ea:ring =
1

4πε0
· rQ

(r2 +R2)3/2

This can be extended to a disk of charge. By dividing
the disk into a set of rings, each with center radius si, the
axial field strength:

Ea:disk =
r

4πε0

∑
i

∆Qi

(r2 + s2
i )

3/2

The surface charge density of area A:

η =
Q

A
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so ∆Q = η∆A. If sa and sb are the inside and outside
radii of the ring containing si, so that si = (sb + sa)/2 and
∆si = sb − sa, then the area of the ring:

∆Ai = πs2
b − πs2

a

= π(sb + sa)(sb − sa)
= 2πsi∆si

Therefore:

∆Qi = 2πηsi∆si

and:

Ea:disk =
r

4πε0

∑
i

2πηsi∆si
(r2 + s2

i )
3/2

=
ηr

2ε0

∑
i

si∆si
(r2 + s2

i )
3/2

=
ηr

2ε0

∫ R

0

s

(r2 + s2)3/2
ds

If u = r2 + s2 and du = 2sds:

Ea:disk =
ηr

4ε0

∫ r2+R2

r2

1

u3/2
du

= − ηr
2ε0
· 1√

u

∣∣∣r2+R2

r2

= − ηr
2ε0

( 1√
r2 +R2

− 1

r

)
Therefore, the field strength of a disk of charge, at distance
r along the axis:

Ea:disk =
η

2ε0

(
1− r√

r2 +R2

)
It is expected that the field will approximate that of a point
charge when r is large relative to the disk radius R. Of-
ten this can be verified by calculating the limit of the field
strength as r approaches infinity, but, in this case, that
limit is zero. However, after factoring r from the denomi-
nator:

Ea:disk =
η

2ε0

(
1− 1√

1 +R2/r2

)
The binomial approximation allows:

(1 + x)α ≈ 1 + αx

when |x| < 1 and |αx| � 1. In this case, x = R2/r2 and
α = −1/2, so:

Ea:disk ≈
η

2ε0

(
1−

[
1 +

(
− 1

2
· R

2

r2

)])

=
η

2ε0

(1

2
· R

2

r2

)
=

ηR2

4ε0r2

when r � R. ηR2 = Q/π, so the field strength at a great
distance:

Ea:disk ≈
1

4πε0
· Q
r2

as expected.

The field strength for a plane of charge is found by letting
the disk radius R approach infinity. At any point outside
the plane:

Eplane =
η

2ε0

Note that the strength is constant everywhere outside the
plane. This would obviously not hold for a non-infinite
plane.

A parallel-plate capacitor is constructed from two flat
conductive surfaces with a non-conductive material be-
tween. As a charge forms on one plate, an equal and
opposite charge forms on the other. Because the plates
are very close, both can be modeled as simple planes of
charge. Each field radiates in both directions, overlapping
inside and outside the capacitor. Inside, the fields point
in the same direction, from the positive to the negative, so
the field strength is twice that produced by a single plane:

Ecap =
η

ε0
=

Q

ε0A

Outside, the fields point in opposite directions, away from
the positive and toward the negative. In an idealized capac-
itor, these cancel. In practice, a fringe field is produced,
especially near the edges.

18.4 Motion of charged objects

Given a particle with charge q and mass m, its acceleration
within electric field ~E:

~a =
~F

m
=

q

m
~E

The magnitude of the acceleration is determined by the
charge-to-mass ratio q/m.
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A field with the same direction and magnitude at every
point is called a uniform electric field. This must be dis-
tinguished from a uniform charge distribution, which could
produce a uniform field, but often does not. As expected,
a charged particle experiences constant acceleration in a
uniform field.

Because there is no gradient, no net force is exerted on a
dipole in a uniform field, but it is subject to a polarizing
torque. Equal and opposite forces apply to the charges, so
the system acts as a force couple. If the dipole’s length
is s, and if the angle between that length and the lines of
action is θ, then the distance between the lines l = s sin θ:

~F−

θ

~F+

l
s

Therefore, the magnitude of the torque:

τ = lF = s sin θ · qE

The magnitude of the dipole moment p = sq, so:

τ = pE sin θ

More generally, if ~r is the displacement from a pivot to the
point of application, then ~τ = ~r × ~F , so that:

~τ = q~r ×
~F

q
= ~p× ~E

19 Gauss’ law

Electric flux Φe, measured in Nm2/C, is the total strength
of the electric field passing through a surface. For a given
field, the flux varies with the area and orientation of the
surface. Larger surfaces collect more of the field, as do
those that are more perpendicular to it, since these have
larger cross-sectional areas relative to its direction.

A uniform electrical field ~E can be decomposed into two
components, one parallel to the surface, and one perpen-
dicular. The parallel component does not pass through the
surface. If θ is the angle between ~E and unit vector n̂ that
is normal to the surface, the perpendicular component:

E⊥ = E cos θ

Therefore, the flux in a uniform field:

Φe = EA cos θ

If the surface is represented by area vector ~A = An̂:

Φe = ~E · ~A

In a non-uniform field, if ~Ei is the strength at a point on
the surface, and if (δ ~A)i is the infinitesimal area at that
point, the flux through the point:

Φi = ~Ei · (δ ~A)i

The flux through the entire surface is given by the surface
integral:

Φe =
∑
i

~Ei · (δ ~A)i =

∫
~E · d ~A

A closed surface is one that completely divides an in-
side volume from the outside. A Gaussian surface is a
closed surface with an electric field passing through it. The
flux through such a surface is given by the closed surface
integral:

Φe =

∮
~E · d ~A

This is calculated like any other integral; the circle over the
integral sign merely indicates that the surface is closed. d ~A
is assumed to point from inside to outside.

If a point charge is centered within a spherical Gaussian
surface, its field will be constant in strength everywhere on
the surface, and normal to the surface as well. Therefore:

Φe =

∮
~E · d ~A = E

∮
dA = EA

with A being the total area of the surface. If Q is the source
charge, and r the sphere’s radius:

E =
1

4πε0
· Q
r2

A = 4πr2

E decreases as r increases, but A increases by a like
amount, so that the flux through the surface:

Φe =
Q

ε0

This is called Gauss’ law.

The flux through a small area is constant for any radius,
so the law can be applied to a closed surface of any shape,
since this can be modeled as a collection of narrow radial
sections of varying length. Complex surfaces may require
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that sections exit and re-enter the volume one or more
times. These also conform to Gauss’ law, since exiting
produces outward-pointing d ~A, entering produces inward -
pointing d ~A, and each section necessarily exits the volume
once more than it enters.

Similarly, charges outside a closed surface produce flux at
specific intersection points, but they contribute nothing to
the total flux, since the number of entrances always equals
the number of exits. Therefore, the total flux through a
closed surface that contains no net charge must be zero.

Finally, because the shape of the surface can vary, a
charge’s location can vary as well. Gauss’ law therefore
applies to collections of charges within the surface, regard-
less of their distribution, with the total charge being given
by Q.

19.1 Symmetric charge distributions

A shape is symmetric if it is unchanged after one or more
geometric transformations. In particular:

� It has translation symmetry along a given axis if it
is unchanged after being moved along that axis;

� It has rotation symmetry about an axis if it is un-
changed after being rotated about that axis;

� It has reflection symmetry relative to a plane if it
is unchanged after each point is moved to the same
relative position on the other side of the plane.

A symmetric charge distribution produces a field with the
same symmetry. No vector in a symmetric field can have
a component that is inconsistent with the field’s symme-
try; therefore, the field produced by a spherical distribution
must point toward or away from the center, since a tan-
gential component would change direction when rotated.

Because it shows the total flux through a surface, Gauss’
law can be used to find the field strength through each point,
if it can be shown that the field has the same strength ev-
erywhere on the surface, and if it is always normal to the
surface.

If a charge distribution has spherical symmetry, a sphere
centered on the distribution will meet both these criteria.
Consider a spherical shell of charge. For a Gaussian
surface inside the shell, the total flux must be zero. The
field on the surface of this inside shell is required to have
the same direction and magnitude at all points, so the

strength at these points must also be zero. Therefore, the
field strength must be zero at all points inside the outer
shell. The same can be said of the gravitation field pro-
duced inside a spherical shell of matter.

Although charges outside a Gaussian surface do not add
to the total flux, they do produce non-zero field values at
specific points if the charge distribution lacks the necessary
symmetry. By itself, Gauss’ law only guarantees that such
charges produce offsetting values at other points, so that
the flux as a whole is zero.

More generally, the field produced by a symmetric distri-
bution is determined by dividing the total flux through the
surface by its area. The area of a sphere is 4πr2, so if Q is
the charge contained by that sphere:

Esph =
Φe

A
=
Q/ε0
4πr2

Therefore, the field produced by a sphere of charge, or
any other distribution with spherical symmetry:

~Esph =
1

4πε0
· Q
r2
r̂

This matches the field produced by a point charge, as long
as r is outside the sphere.

If the sphere is also uniform in its charge density, and if it
has radius R, the field inside the sphere at distance r will
vary with the amount of charge contained by r. If Qr and
Vr are the charge and volume contained by radius r, and if
Q and V are the charge and volume of the distribution as
a whole:

Qr

Q
=
Vr
V

=
4
3
πr3

4
3
πR3

so that:

Qr =
r3

R3
Q

By Gauss’ law:

Ein:sph · 4πr2 =
(r3/R3)Q

ε0

so the field inside the uniform sphere of charge:

~Ein:sph =
1

4πε0
· Q
R3

r · r̂

As r increases, the charge near the center has less effect,
but much more charge is encompassed by the new vol-
ume. Therefore, though the strength of the field outside
the sphere decreases with the square of the distance, it
increases linearly with distance inside.
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As already seen, the field produced by a line of charge can
be derived from Coulomb’s law after a difficult integral
substitution. With Gauss’ law, it is calculated more easily.
If the line has linear charge density λ, and if a section of
length L is enclosed by a cylinder, the total charge within
Q = λL. The field is normal to the outside surface and
equally strong at all points, while the flat surfaces at the
ends are parallel to the field, allowing them to be ignored.
Because the outside area A = 2πrL:

Eline =
Q/ε0
A

=
λL/ε0
2πrL

=
λ

2πε0r

as expected.

The field produced by a plane of charge is found in like
manner. If a cylinder passes halfway through the plane,
and if its axis is perpendicular to it, a disk of charge will be
found within. Given cylinder radius R and surface charge
density η, the contained charge Q = 2πR2η. The ends of
the cylinder are normal to the field, and their total surface
area is 4πR2. The walls of the cylinder are parallel, so they
add no flux. The field strength:

Eplane =
Q/ε0
A

=
2πR2η/ε0

4πR2
=

η

2ε0

as expected.

19.2 Conductors in electrostatic
equilibrium

When a conductor reaches electrostatic equilibrium, the
field strength everywhere inside drops to zero. Conductors
contain an abundance of charge carriers, so if the field were
non-zero, some charges would move. In particular, if the
field strength were positive, some positive charges would
follow the field, or some negative charges would move con-
trary to it, and the positive concentration would be dis-
persed or canceled. In this sense, every electric field directs
charges toward an equilibrium that dissipates the field it-
self, if the charges are mobile. This implies that the conduc-
tor’s interior is electrically neutral. This conclusion holds
even if there is a non-conductive void inside the conductor,
as long as that void does not contain a charge of its own.
Because there is no field inside, the flux through all points
of a Gaussian surface that is anywhere inside the conduc-
tor is also zero, again implying that the interior is neutral.
Any excess charge must therefore be found on the surface.
Furthermore, the electric field on the surface must at every
point be directed outward, and it must be normal to the
surface, since any tangential component would produce a
current that would rearrange the charges.

The same reasoning applies to fields produced by external
charges. At equilibrium, such a field must be normal to the
surface of the conductor, and it must end at that surface.
A metal box can therefore be used to screen an external
electric field from the box’s interior, or vice-versa. Wire
cages are also reasonably effective.

Though it is likely to vary at different points, the field
strength just outside the surface of a conductor can be re-
lated to the surface charge density η at that point. If a
small cylinder passes halfway through the surface, and if
its axis is perpendicular to the surface, a disk of area A
and charge Q = ηA will be enclosed. This resembles the
process used to analyze a plane of charge, but in that case,
the field pointed away from the surface on both sides. This
field has been shown to point outward only, so the field
strength near the surface:

Esurf:conduct =
Φe

A
=
ηA/ε0
A

=
η

ε0

20 Electric current

As defined earlier, current is the aggregate movement of
charge through some material. Conduction electrons are
always moving, but this thermal motion is random, and no
net displacement results.

Conduction electrons continue their random motion in the
presence of an electric field, but as a group they also acceler-
ate to the drift speed vd, which is typically near 10−4 m/s.
If n is the number of electrons per cubic meter, and if A is
the conductor’s cross-sectional area, then the number that
will pass a given point in one second:

i = nAvd

This is called the electron current. In most metals, one
electron per atom is available to carry charge, so n can be
derived from the conductor’s density and atomic mass. Be-
cause conduction electrons are so numerous, a great deal
of current can be produced by moving each electron only a
small fraction of the conductor’s length.

Electrons can be moved from one place to another, but
they cannot be destroyed. This produces the law of con-
servation of current, which guarantees that the current
is equal at all points in a current-carrying wire. By exten-
sion, given a number of inputs and outputs that combine
at a junction, the total magnitude of the input currents
must equal that of the outputs, while the sum of the signed
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inputs and outputs must equal zero. This is called Kir-
choff’s first law or Kirchoff’s junction law.

A single electron bounces off many ion cores as it traverses
the conductor. With each collision, a portion of the elec-
tron’s kinetic energy is lost to the cores. This slows the
electron and heats the conductor, much as friction slows
a sliding object and heats the surfaces. The collision also
changes the direction of motion.

If electric field ~E points in the direction of the negative
s-axis, the acceleration between collisions:

as =
F

me

=
−e(−E)

me

=
eE

me

If vs:i is the s-component of the electron’s velocity just af-
ter a random collision, then the velocity after a period of
acceleration:

vs = vs:i + as∆t = vs:i +
eE

me

∆t

The average of vs is the drift speed, while the average of
∆t is the mean time between collisions τ , so that:

vd = vs:i +
eE

me

τ

Thermal motion produces no net displacement, so vs:i is
zero, and:

vd =
eE

me

τ

Therefore, the electron current:

i = nA
eE

me

τ =
enAτ

me

E

Like n, τ is determined by the material. So, for a given
conductor, the current varies with the strength of the field.

The more general approach defines current as the rate at
which charge is transferred:

I =
dQ

dt

This current is measured in amperes, with A ≡ C/s. It is

technically a vector, with ~I pointing in the same direction
as ~E. This gives the direction that positive charge carri-
ers would move, if they were found in the conductor. In
practice, electrons move against this current. The current
passing through a 100W light bulb is around 0.85A.

For a steady current, the charge moving through the con-
ductor:

Q = I∆t

If Ne is the number of electrons in this charge, then the
magnitude of the current:

I =
Q

∆t
=

eNe

∆t

However, Ne/∆t is the electron current, so:

I = ei = enAvd

n and vd are determined by the material and the electric
field, while A varies with the size of the conductor. Divid-
ing by this area gives the current density:

J =
I

A
= envd =

e2nτ

me

E

measured in A/m2. Note that the conductivity:

σ =
e2nτ

me

is a property of the material, with larger values producing
more current. As a result:

J = σE

Inverting the conductivity gives the material’s resistivity:

ρ =
1

σ
=

me

e2nτ

Note that resistivity is related to resistance but not syn-
onymous with it.

As a metal’s temperature decreases, its atoms vibrate less
vigorously, which decreases the likelihood that a current-
carrying electron will collide with a core. This increases τ
and makes the metal less resistive. At sufficiently low tem-
peratures, quantum effects cause some materials to exhibit
superconductivity. In this state, electrons move without
colliding with the cores, and the material’s resistivity drops
to zero. This allows electrons to continue their motion even
if the electric field disappears.

21 Electric potential

An electric field performs work on an object with a positive
charge when that object moves in the direction of the field.
Conversely, potential energy is created when the positive
charge moves against the field. If ~E is a uniform field that
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points in the direction of the negative s-axis, then the work
performed by the field:

We = −qE∆s

In general, ∆U = −W , so if U0 is the potential energy
where s is zero, the electric potential energy of charge
q at position s in a uniform field:

Ue = U0 + qEs

In a non-uniform field, force and work vary with position.
More particularly, if the field is produced by a point charge
qA, the field strength is given by Coulomb’s law. If r is the
distance from the field-producing charge qA, the radial force
affecting the mobile charge qB:

F =
KqAqB
r2

Therefore, the work performed by the field:

We =

∫ r1

r0

KqAqB
r2

dr = −KqAqB
r

∣∣∣r1
r0

= KqAqB

( 1

r0

− 1

r1

)
and:

∆Ue = KqAqB

( 1

r1

− 1

r0

)
Like gravitational potential energy, Ue can be assumed to
equal zero when the distance is infinite, which is also where
the charges cease to interact. When this is done, the elec-
tric potential energy at r in the point-charge field:

Ue =
KqAqB
r

=
1

4πε0
· qAqB

r

When qA and qB are opposite in sign, finite distances pro-
duce negative energy values. These merely indicate that
the system has less potential energy than one for which
Ue is zero or positive. This is obvious in the case of the
opposite-charge system, since the field performs positive
work as the charges move closer together. A similar result
was produced for gravity, which is also an attractive force.

When qA and qB have the same sign, the charges repel,
and finite distances yield positive energy values. Ue is the
potential energy that would be created by moving a like
charge from an infinite distance to r.

More generally, if there are multiple point charges in the
system, the total potential energy is equal to the sum of
the energies between each pair. For j charges:

Ue =
∑
i<j

Kqiqj
rij

21.1 Potential energy of a dipole

Dipoles are neutral as a whole, so, in a uniform field, trans-
lational motion produces no electric potential energy. In-
stead, dipoles create such energy with rotational motion.

As already shown, placing a dipole in a uniform field pro-
duces a force couple. The positive end traces an arc as the
dipole rotates, but this can be approximated by straight
increment d~u:

φ

~F+

d~u
dφ

θ
1

2
s

Therefore, the work performed at the positive end:

dW+ = ~F+ · d~u

Given angle θ from ~F+ to d~u, this yields:

dW+ = F+ cos θ du = qE cos θ du

If the angular displacement is dφ, and the dipole length s,
the small angle approximation allows:

du =
1

2
s sin dφ ≈ 1

2
sdφ

so that:

dW+ =
1

2
sqE cos θ dφ

If φ is the starting angle of the positive end relative to ~E,
then θ = φ+ π/2, and:

cos θ = cos(φ+ π/2) = − sinφ

Additionally, the dipole moment ~p points from the negative
end to the positive, with p = sq. Therefore:

dW+ = −1

2
pE sinφdφ

As the dipole rotates around its center, the ends move in
opposite directions relative to the field. The charges are
opposite in sign, however, so the total work is equal to
twice the work at either end:

Wdip = −pE
∫ φ1

φ0

sinφ dφ = pE cosφ1 − pE cosφ0

By extension:

∆Udip = −pE cosφ1 + pE cosφ0

and:

Udip = −pE cosφ = −~p · ~E
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21.2 Energy and potential

Earlier, the electric field ~E was defined relative to an ar-
bitrary source charge, allowing the force affecting a second
charge q to be calculated with:

~F = q ~E

Just as the field gives the force at a particular point relative
to q, the electric potential:

V ≡ Ue

q

gives the potential energy at some point relative to a second
charge:

Ue = qV

Potential is measured in volts, with V ≡ J/C. Just as
a field’s structure can be visualized with field lines, it can
also be displayed as a contour map. Each line in the map
represents the cross-section of an equipotential surface,
containing points which have the same potential. Field
lines are always perpendicular to these surfaces, and they
point from areas with higher potential to lower potential.
The field strength in each area varies inversely with the
distance between the equipotential lines.

Given two points, the potential difference ∆V may also
be called the voltage. As a charge moves between the
points, its potential energy changes:

∆Ue = q∆V

In the absence of resistive forces:

K1 + qV1 = K0 + qV0

this entails an offsetting change to the particle’s kinetic
energy:

∆K = −q∆V

The field inside a parallel-plate capacitor is uniform. As
shown above, in such a field, Ue = U0 + qEs. If U0 is
assumed to be zero at the negative plate, the potential:

Vc = sE

If the plate distance is d, then the voltage across the plates:

∆Vc = dE

This allows the field inside the capacitor to be defined rel-
ative to the voltage:

E =
∆Vc

d

Field strength has been measured in N/C, but this suggests
that it can also be measured in V/m, which explicitly re-
lates the field to its ability to create potential energy. This
is the case, since V ≡ J/C and J ≡ N ·m.

As shown earlier, a point charge produces a non-uniform
field with potential energy KqAqB/r. Therefore, the po-
tential near point charge q:

Vp =
Kq

r
=

1

4πε0
· q
r

For points outside its volume, a sphere of charge produces
the same field that a point charge would produce. There-
fore, if the sphere has radius R, and if the potential at the
surface is V0, the sphere’s charge:

Q = 4πε0RV0

This allows the potential outside the sphere to be related
to the surface potential:

V =
R

r
V0

If there are multiple point charges, the electric potential at
a point in space can be found by summing the potentials
produced by each charge. Given j charges:

V =
∑
i

1

4πε0
· qi
ri

This can be used to calculate the potential near various
charge distributions. The potential along axis s passing
through the center of a ring of charge Q can be determined
by dividing the ring into small arcs, each with charge dQ.
The distance from the axis to any arc:

r =
√
R2 + s2

so the potential:

V =

∫
1

4πε0
· dQ√

R2 + s2
=

1

4πε0
· Q√

R2 + s2

A disk of charge can be modeled by summing a series of
rings. If each ring has radius ri and charge ∆Qi, then the
total potential at axis position s:

V =
1

4πε0

∑ ∆Qi√
r2
i + s2

The area of one ring:

∆Ai = 2πri ·∆ri
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while the surface charge density for the entire disk:

η =
Q

πR2

so the ring’s charge:

∆Qi = η∆Ai =
2Q

R2
ri∆ri

Therefore, the total potential:

V =
1

4πε0

∑ 2Q

R2
· ri√

r2
i + s2

∆ri

=
Q

2πε0R2

∫ R

0

r√
r2 + s2

dr

If u = r2 + s2, then du = 2r dr, and:

V =
Q

2πε0R2

∫ R2+s2

s2

1
2

du

u1/2

=
Q

2πε0R2
u1/2

∣∣∣R2+s2

s2

So the axial potential produced by a disk of charge:

V =
Q

2πε0R2

(√
R2 + s2 − s

)
The surface potential at the disk center is:

V0 =
Q

2πε0R

which allows the axial potential to be expressed in terms
of the center potential:

V = V0

√
R2 + s2 − s

R
= V0

(√
1 +

s2

R2
− s

R

)

21.3 Field and potential

As already established, ∆V ≡ ∆Ue/q, while:

∆Ue = −
∫ s1

s0

Fs ds

Combining these gives:

∆V = −
∫ s1

s0

Fs
q

ds = −
∫ s1

s0

Es ds

So, just as the electric potential energy can be related to
the electrostatic force over some displacement, the voltage
can be related to the field strength over that displacement.

This allows the potential to be derived from the field. If
Er is the field component that parallels axis r, then the
potential difference between an infinitely distant point and
position r:

∆V = V (∞)− V (r) = −
∫ ∞
r

Er dr

Assuming V (∞) is zero:

V (r) =

∫ ∞
r

Er dr

If the field is produced by a point charge, its strength:

Er =
1

4πε0
· q
r2

and:

V (r) =
q

4πε0

∫ ∞
r

1

r2
dr =

q

4πε0
· −1

r

∣∣∣∞
r

=
1

4πε0
· q
r

as calculated earlier.

Conversely, if the displacement is sufficiently small, ∆V
will be small as well, and field strength Es will be essen-
tially constant:

dV = −Es ds

so that:

Es = −dV

ds

Earlier, when discussing mechanical energy diagrams, it
was shown that the negated slope −dU/ds of the U curve
gives the strength of the conservative force that produces
the potential energy. The same relationship is observed
here, since F/q = E and U/q = V .

This relation allows the field to be derived from the poten-
tial. Starting with the potential of the point charge:

Er = −dV

dr
= − d

dr

( 1

4πε0
· q
r

)
=

1

4πε0
· q
r2

as expected.

It can be extended to three dimensions with partial deriva-
tives:

Ex = −∂V
∂x

Ey = −∂V
∂y

Ez = −∂V
∂z

The electrostatic force is conservative, so every path be-
tween two particular points produces the same electric po-
tential energy. Every such path also produces the same
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potential difference. A path that returns to the starting
position is therefore equivalent to a zero-length path, so it
produces no potential difference. This is called Kirchoff’s
loop law.

As explained earlier, the field everywhere inside a conduc-
tor in electrostatic equilibrium is zero. If it were not, the
field would produce a current that would negate the field.
By extension, the voltage between any two inside points is
zero, so, at equilibrium, every point within the conductor
has the same potential. This means that the conductor’s
surface is an equipotential surface, and the field outside
the conductor, if any, is perpendicular at all points to the
conductor’s surface. Equipotential surfaces near the con-
ductor also match its shape, more or less, since they are
perpendicular to the field lines, which remain roughly per-
pendicular to the conductor at small distances.

A battery uses chemical means to separate charges. As
it moves charge q from the negative terminal to the posi-
tive, it performs work Wch, which produces a like amount
of potential energy:

∆U = Wch = −We

The battery’s work per unit of charge is called the elec-
tromotive force, or emf :

E =
Wch

q
= ∆V

measured in volts. Note that emf represents a potential
difference, not an actual force. Also, the abbreviation is
written with lowercase letters. The same letters, when up-
percased, represent ‘electromagnetic field’.

21.4 Potential and current

Connecting the terminals of a battery with a wire creates a
potential difference along the wire’s length, and a field in-
side the wire. If the wire has a constant diameter, this field
will have the same strength throughout the wire’s length
L. If s is the distance along the wire, measured from the
negative terminal, and if Es is the s-relative component of
the field ~Ew inside the wire:

∆V = −
∫ L

0

Es ds = −EsL

~Ew is directed from the positive end to the negative, while
Es is negative, since motion against the field is required to
produce positive ∆V . Therefore, Ew = −Es, and the field
strength everywhere inside the wire:

Ew =
∆V

L

A Measurement

Accuracy describes the proximity of a measurement to the
quantity being measured. Precision describes the proxim-
ity of repeated measurements to each other.

Systematic errors shift measurements in a consistent di-
rection. These affect the accuracy of a measurement, but
not its precision. Random errors impart no predictable
bias. These affect precision, but over repeated trials, they
have no effect on accuracy.

The least count of a measuring device is the smallest unit
gradation offered by that device. When taking measure-
ments, it is customary to record all decimal places up to
the least count, plus an estimated digit. This establishes
the number of significant digits in the measurement.

When reading values, zeroes to the left of the first non-zero
digit are not counted as significant digits. If a decimal point
is given, all trailing zeros are considered significant. If there
is no decimal point, the significance of trailing zeroes is not
defined, though they can generally be considered insignif-
icant. Values that are defined rather than measured can
be considered to have an unlimited number of significant
digits.

The result of a calculation should not have more significant
digits than the least precise measurement used, though it
is customary to retain an extra digit if the result begins
with one. It is permissible to retain one or two extra digits
for intermediate calculations.
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SI units take their name from Le Système International
d’Unités. Common prefixes include:

Factor Prefix Symbol

1018 exa E
1015 peta P
1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
101 deka da
· · · · · · · · · · · · · · · · · · · · ·

10−1 deci d
10−2 centi c
10−3 milli m
10−6 micro µ
10−9 nano n
10−12 pico p
10−15 femto f
10−18 atto a

B Vectors

By convention, vectors are not allowed to have negative
magnitudes; if such a result is produced, the vector is in-
stead made to point in the opposite direction.

In the rectangular coordinate system, a vector ~A may be
decomposed into component vectors ~Ax, ~Ay, and ~Az
which are parallel to the axes. These may be described
by their components Ax, Ay, and Az, which can have
negative values.

The unit vectors ı̂, ̂, and k̂ have unit magnitudes that
coincide with the positive x, y, and z axes. Therefore:

~A = Ax ı̂+Ay ̂+Azk̂

B.1 Dot products

If the counterclockwise angle from ~A to ~B is θ, the vectors’
dot product or scalar product:

~A · ~B ≡ AB cos θ

Since the dot product of a unit vector with itself is one, and
the dot product of any vector with an orthogonal vector is

zero, this gives the sum of the products of the correspond-
ing components:

~A · ~B = (Ax ı̂+Ay ̂+Azk̂) · (Bx ı̂+By ̂+Bzk̂)

= AxBx +AyBy +AzBz

B.2 Cross products

If ~A and ~B are within the xy-plane, their cross product
or vector product:

~A× ~B ≡ (AB sin θ)k̂

with k̂ pointing toward the viewer when θ is visible as a
counterclockwise turn from ~A to ~B. This product is per-
pendicular to both vectors and normal to the plane con-
taining them. Its magnitude is greatest when A and B are
perpendicular to each other, and it is zero when they point
in the same or opposite directions. The cross product is
not commutative:

~A× ~B 6= ~B × ~A

While ~B × ~A does have the same magnitude, it points in
the opposite direction.

The product rule can be applied to cross products, with:

d

du
( ~A× ~B) =

(d ~A

du
× ~B

)
+
(
~A× d ~B

du

)
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