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1 Statistics and probability

The variable representing the input in some data series is
known as the independent variable, the domain, or the
abscissa; the variable representing the output is known as
the dependent variable, the range, or the ordinate.

If the mean of samples x0 through xN is µ, the deviation
of each sample is |xi − µ|. Given:

σ2 =
1

N − 1

N−1∑
i=0

(xi − µ)2

σ2 and σ estimate the variance and the standard devi-
ation of the population. Dividing by N rather than N − 1
gives the exact variance of the sample, but that less accu-
rately describes the population.

The variance measures the power of the sample variation.
When independent random signals are summed, their vari-
ances also add to produce the variance of the combined
signal.

The mean gives the DC offset of a signal, while the stan-
dard deviation measures the AC component. The root
mean square amplitude:

ARMS =

√√√√ 1

N

N−1∑
i=0

x2i

measures the DC and AC components together.

The mean changes continually as a running series is mea-
sured. To avoid recalculating the entire sum at each accu-
mulated point, the variance can also be calculated with:

σ2 =
1

N − 1

N−1∑
i=0

x2i −
1

N

(
N−1∑
i=0

xi

)2


In some cases, the mean represents a value being measured,
and the standard deviation, noise. When this is true, the
signal-to-noise ratio (SNR) equals µ/σ. Conversely,
the coefficient of variation (CV) is σ/µ.

Non-stationary processes have statistical properties
that change as they are sampled.

A probability mass function gives the likelihood of each
possible outcome for a discrete random variable. A prob-
ability density function does the same for a continuous
variable, with the understanding that the probability at a
single point is infinitely small, since the domain contains

an infinite range of values. To use a density function, the
area under a segment must be calculated. This can be done
with the cumulative distribution function, which is the
integral of the probability density function.

The normal or Gaussian distribution:

P (x) =
1√
2πσ

e
−(x−µ)2

2σ2

Though P (x) is never zero, the function approaches zero
very quickly as x moves away from µ. The normal cumu-
lative distribution function is represented by Φ(x).

The Central Limit Theorem guarantees that, when a set
of random values are added, the distribution of their sum
approaches a normal distribution as the number of val-
ues increases, regardless of their individual distributions.
Alternatively, given random numbers R1 and R2 that are
evenly distributed over (0, 1], the Box-Muller transform:

RN =
√
−2 lnR1 cos(2πR2)

produces values that are normally distributed.

Accuracy describes the proximity of the sample mean to
the true value; precision describes the proximity of sample
values to each other. Poor accuracy is caused by systematic
errors; poor precision, by noise.

2 ADC and DAC

Sampling changes time from a continuous variable to a dis-
crete variable; quantization does the same with amplitude.

Quantization produces errors that range from −1/2 to 1/2
bits; the errors generally have an even distribution, and a
mean of zero. The standard deviation over this range is
1/
√

12, so the resulting noise has RMS amplitude equal to√
12/2b of the full range, where b is the bit depth.

When the errors are not evenly distributed, as happens
when signal variations are small relative to the bit depth,
the output can be improved by dithering, which adds
noise to the signal before it is quantized. Small input values
which would otherwise be rounded appear in the quantized
output as biases toward the positive or negative range of
the noise. Since the noise has a mean of zero, this brings
the output mean at each point closer to the continuous
value than would otherwise be possible.
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2.1 Sampling Theorem

An impulse train is a series of equally-spaced impulses.
Sampling is equivalent to the multiplication of a continu-
ous signal by an impulse train with unit amplitude, which
implicitly convolves the two signal spectra. An impulse
train with frequency fs contains an infinite series of com-
ponents at integer multiples of fs. Signal multiplication
creates output containing the sum and difference of every
component pair in the signals. Adding the components
produces copies of the source spectrum at multiples of fs;
these are called upper sidebands. Subtracting produces
mirror images of the spectrum that end at multiples of fs;
these are called lower sidebands. The distance between
each peak is fs; when components in the source signal ex-
ceed half this distance, the sidebands overlap, and aliasing
results. The presence of high-frequency sidebands requires
low-pass filtering at the Nyquist frequency when the signal
is returned to a continuous form; this is performed by a
reconstruction filter.

After a frequency f is sampled at rate fs, the samples are
indistinguishable from those of frequency |f −Nfs|, for all
integer N .

In practice, impulses are difficult to generate electronically,
so DACs use zero-order hold components that hold each
sample value for one increment. This essentially convolves
the impulse train with a rectangular pulse, which in turn
scales each output component by:

H[f ] =

∣∣∣∣ sin(πf/fs)

πf/fs

∣∣∣∣ = | sinc(f/fs)|

This effect must also be corrected by the DAC.

Aliasing always changes the frequency of components that
exceed the Nyquist frequency. It can also change the phase
of such components, but the only change that is possible is
a 180◦ shift.

2.2 Analog filters for data conversion

Three common analog filters are the Chebyshev, But-
terworth, and Bessel designs, each of which optimizes a
particular filtering characteristic.

The sharpest roll-off is offered by the Chebyshev filter, but
this design also produces amplitude variations in the pass-
band called passband ripple. Butterworth filters offer
the greatest roll-off achievable without passband ripple.

Step response describes the way a filter behaves after the
input changes abruptly from one level to another. After
a sudden change, filters exhibiting overshoot will briefly
pass the target level in the time domain, and then ring,
varying above and below the target until the steady state is
reached. Chebyshev and Butterworth filters both produce
significant overshoot. Bessel filters produce a flat passband
and no overshoot, and a maximally linear phase response
that creates relatively symmetrical output in response to
symmetrical input. Their roll-off is very low, however.

Many devices use multirate data conversion. Instead of
sampling and processing at the same rate, these devices
first sample at a much higher rate, increasing the usable
bandwidth relative to the required bandwidth, and allow-
ing the use of simpler and cheaper antialiasing hardware.
The samples are then filtered in software and decimated to
reach the lower processing rate. After processing, the data
is upsampled to a high rate by padding with zeros and fil-
tering digitally. Per the sampling theorem, the sidebands
produced by the sampling process are centered around mul-
tiples of the sample rate; by increasing this rate, it is pos-
sible to use simpler components during reconstruction. In
addition to lowering costs, the use of digital filters improves
output quality.

2.3 Single-bit data conversion

Single-bit conversion digitizes continuous signals without
sampling. Most single-bit techniques use delta modula-
tion. In the simplest designs, the analog signal is routed
to an IC containing a comparator, a capacitor, and a latch.
The capacitor starts with zero voltage. When the signal
voltage exceeds that of the capacitor, the latch is set; when
it does not, the latch is unset. Output is generated by read-
ing the latch state at a high rate, typically several hundred
kilohertz. Every time the latch is read, the capacitor’s
voltage is increased or decreased, depending on whether
the latch was set. The result is a stream of distinct bits,
each of which represents an increase or decrease in input
voltage at that point. The data is returned to a continu-
ous signal in a similar manner. Single-bit output cannot
represent abrupt changes in level; instead, new values are
approached incrementally at the slew rate, defined by the
quantization size and the bit rate. Steady signal levels are
approximated by alternating set and unset bits.

Simple single-bit implementations cannot represent audio
data effectively without extremely high bit rates. Con-
tinuously Variable Slope Delta modulation improves
fidelity by increasing the step size (and thus the slew rate)
when many set or unset bits are read consecutively.
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Neither of these techniques produce representations that
can be used for general DSP, and neither captures the DC
offset of the source signal, if any. More complex designs
like delta-sigma conversion can be converted to sample
representations.

3 Linear systems

In DSP, time domain signals are typically represented with
lowercase letters, and frequency domain data with upper-
case. Discrete signals are indexed with square brackets,
and continuous signals with parentheses.

In this context, a system is a process that returns an out-
put signal y[n] in response to an input signal x[n]; in this
sense, it is a function of signals rather than one of time or
sample indices.

A system is linear if it exhibits both homogeneity and ad-
ditivity. Assuming x[n] ⇒ y[n], homogeneity requires
that:

kx[n]⇒ ky[n]

If x1[n] ⇒ y1[n] and x2[n] ⇒ y2[n], additivity requires
that the signals pass through without interacting, so that:

(x1[n] + x2[n])⇒ (y1[n] + y2[n])

Linear systems commute, so when they are connected in
series, changing their order does not affect the final output.

A system exhibits shift invariance if, given x[n] ⇒ y[n],
it is also the case that:

x[n+ s]⇒ y[n+ s]

This ensures that the system does not change over time,
and though this property is not a requirement for linearity,
it is necessary for most DSP techniques. Note that adding
positive s shifts the signal left relative to its original graph.

When shift invariance is assumed, linear systems demon-
strate static linearity and sinusoidal fidelity. If the system
receives an unvarying DC input, static linearity requires
that it produce a steady output that is equal to the input
multiplied by some constant. If the input is a sinusoidal
wave, sinusoidal fidelity requires that the output be a
sinusoidal wave with the same frequency, though possibly
one with a different phase or amplitude, including an am-
plitude of zero. It follows from this that amplitude modula-
tion, frequency modulation, clipping, and slewing are not

linear systems. It also follows that non-sinusoidal inputs
are likely to change in shape, since they contain sinusoidal
components which may be phase-shifted or scaled by dif-
ferent amounts.

3.1 Decomposition

In linear systems, signals can be combined only by shifting,
scaling, and then summing them, this process being known
as synthesis. Separating a signal into two or more additive
components is called decomposition. By decomposing a
complex input signal into simple components, and then un-
derstanding the output produced by the components sep-
arately, it is possible to determine the output produced by
the original complex input.

Impulse decomposition divides a signal of N samples
into N components, each containing a single distinct sam-
ple from x[n]. So, given components ui[n] for 0 ≤ i ≤ N−1,
every component sample is zero except for ui[i] = x[i].
This supports convolution, which characterizes the system
according to how it responds to impulses.

Step decomposition also produces N components, but
the first has all samples set to x[0], and the rest con-
tain i zero samples followed by N − i samples equal to
x[i]− x[i− 1]. In all components, ui[i] gives the difference
between the corresponding sample in x and its predecessor.
Because each component contains at most two values, this
allows the system to be described in terms of its response
to changes in input.

Even/odd decomposition divides the input into two
components, one having even or reflective symmetry about
a vertical line at the center of the signal, and one having
odd or rotational symmetry about a point at the center.
The even component:

uE [n] =
x[n] + x[N − n]

2

while the odd component:

uO[n] =
x[n]− x[N − n]

2

Note that the center is implicitly defined as N/2, not
(N − 1)/2, and the input is assumed to repeat, such that
u[N ] = u[0]. These choices allow Fourier analysis of the
signal.

Interlaced decomposition also divides the input into
two components, one containing the even input samples,
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with zeros between them, the other containing the odd sam-
ples, also with zeros. This decomposition is used during the
fast Fourier transform.

Fourier decomposition produces N+2 components, half
of them sine waves, and half cosines. The first sine and co-
sine components complete zero cycles over the N samples,
so they both constitute DC offsets. The second sine and
cosine components complete one cycle over N , the third
complete two cycles, et cetera. The component amplitudes
vary as necessary to produce the original input. This char-
acterizes the system according to its effect on the amplitude
and phase of sinusoidal inputs.

3.2 Non-linear systems

Non-linear systems are not readily analyzed. If the amount
of non-linearity is small, the system can be analyzed as if it
were linear, with the difference being treated as noise. In
particular, many non-linear systems approximate linearity
when amplitudes are small. Sometimes it is possible to
transform the system into a linear equivalent; homomor-
phic processing uses logarithms to convert non-linear sig-
nal products into linear signal sums.

4 Convolution

Non-causal or acausal systems allow the output to be
affected by sample values that have not yet been received.
In causal systems, no output sample y[i] is affected by
any input sample x[j] where j > i; as a result, the impulse
response is zero for all sample indices less than zero.

The delta function δ[n] has value one at sample zero, and
zeros everywhere else. This is also known as the unit im-
pulse. An impulse with sample index s and amplitude a
is represented with a · δ[n− s].

The impulse response h[n] is the signal produced by a
system in response to the delta function:

δ[n]⇒ h[n]

The impulse response of a filter is sometimes known as the
filter kernel or convolution kernel; the response of an
image processing system is the point spread function.
Given a linear, shift-invariant system, and an impulse with
any position or amplitude, the output can be represented
as a shifted and scaled copy of the impulse response.

The convolution of input x[n] with impulse response h[n]
produces output y[n]:

x[n] ∗ h[n] = y[n]

During this process, a copy of h[n] is superimposed at each
point i in the output after being scaled by x[i]:

y[i] =

Nh−1∑
j=0

x[i− j] · h[j]

In this equation, the first sample of the impulse response
is scaled by the current sample of the input, while later
response samples are scaled by earlier input values, repre-
senting the continuation of previous response iterations.

If the input contains Nx samples, and the impulse response
Nh samples, the output will contain Ny = Nx+Nh−1 sam-
ples. Because the first and last Nh − 1 output samples use
only part of the impulse response, discontinuities and other
distortions may be found at the edges, unless the input is
padded with zeros.

Convolution is linear. It is also commutative:

a[n] ∗ b[n] = b[n] ∗ a[n]

associative:

(a[n] ∗ b[n]) ∗ c[n] = a[n] ∗ (b[n] ∗ c[n])

and distributive:

a[n] ∗ b[n] + a[n] ∗ c[n] = a[n] ∗ (b[n] + c[n])

The distributive property allows a group of parallel sys-
tems to be represented by one impulse response that is the
sum of the individual responses.

The delta function acts as an identity, so:

x[n] ∗ δ[n] = x[n]

and, by extension:

x[n] ∗ kδ[n] = kx[n]

x[n] ∗ δ[n− s] = x[n− s]

Given the impulse response:

hD[n] =


0, for n < 0

1, for n = 0

−1, for n = 1

0, for n > 1
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yD[n] = x[n] ∗hD[n] gives the first difference or ‘discrete
derivative’ of x[n], this showing the slope at each point of
the input. Given:

hI [n] =

{
0, for n < 0

1, for n ≥ 0

yI [n] = x[n]∗hI [n] produces the running sum or ‘discrete
integral’ of x[n]. As expected, hD[n] ∗ hI [n] = δ[n].

The same operations can be represented with recursion
equations, which are also called difference equations:

yD[n] = x[n]− x[n− 1]

yI [n] = x[n] + y[n− 1]

In general, the impulse response of a low-pass filter con-
tains a series of adjacent positive values, these averaging
and smoothing the output. The cutoff frequency is ad-
justed by changing the width of the series. To produce a
filter with unity gain at zero hertz, it is necessary that the
sum of the response values equal one.

Since δ[n] leaves input unchanged, subtracting the values
of a low-pass impulse response from δ[n] produces the re-
sponse for a high-pass filter. This is analogous to filtering
with the original response to isolate the low frequencies,
and then subtracting from the original signal. Such a re-
sponse contains a series of negative values with a single
positive discontinuity. To produce a filter with zero gain
at zero hertz, it is necessary that the response values add
up to zero.

If a roughly pulse-shaped signal is convolved with itself
one or more times, a signal with a Gaussian-shaped profile
quickly results.

Given a[n] and target signal b[n], the correlation with
b[n] at all points within a[n] can be determined with
matched filtering, which aligns b[0] with a[i], multiplies
corresponding points in the signals, and sums them to pro-
duce point c[i]:

c[i] =

Nb−1∑
j=0

a[i+ j] · b[j]

This is equivalent to superimposing the end of the reversed
target signal at each point, after scaling.

This process is equivalent to convolution after reversing
a[n] or b[n] around the zero sample, with values before that
sample implicitly equal to zero. This is represented as:

c[n] = a[n] ∗ b[−n]

c[n] is the cross-correlation between a[n] and b[n]. Cor-
relating a signal with itself produces an autocorrelation.
Because the signal is convolved with a reversed image of
the target, a perfect match produces a symmetrical peak
with twice the target width. Given white background noise,
this technique produces the greatest possible contrast be-
tween output values where a match is found and the signal
background where it is not.

5 Discrete Fourier transform

The Fourier transform converts an input signal into a set of
cosine and sine waves of varying amplitudes. Sinusoids are
useful as components because linear systems are guaran-
teed to exhibit sinusoidal fidelity. A combination of cosine
and sine functions are needed at each point to establish the
phase at that frequency.

There are four general types of Fourier transform, one for
each combination of continuous or discrete and periodic or
aperiodic input:

• The Fourier Series applies to continuous, periodic
signals;

• The general Fourier transform applies to continu-
ous, aperiodic signals;

• The discrete Fourier transform (DFT) applies
to discrete, periodic signals;

• The discrete time Fourier transform applies to
discrete, aperiodic signals.

A discrete signal in one domain is associated with a periodic
signal in the other. A continuous signal in one domain is
associated with an aperiodic signal in the other. If the time
domain signal is periodic, it is analyzed over one period;
if it is aperiodic, it is analyzed from negative to positive
infinity. When real-number transforms are used for syn-
thesis, only positive frequencies are considered, and these
are processed from zero to one half of a cycle for periodic
time domain signals, or from zero to positive infinity for
aperiodic signals. When complex transforms are used, the
negative frequencies are also included.

The time domain signal is assumed to run from negative
to positive infinity; this follows from the fact that the si-
nusoids used to describe the signal themselves cover this
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range. Decomposing an aperiodic signal produces an infi-
nite series of sinusoid frequencies, so, in practice, the input
buffer is assumed to represent one cycle of an infinite peri-
odic series, and the DFT is used to process it.

All four transforms can be implemented with real or com-
plex numbers. The real DFT converts an N point input
x[n] into two N/2 + 1 point outputs, ReX[k] and ImX[k].
ReX[k] is the real part of the output, and each of its val-
ues gives the unnormalized amplitude of one cosine output
component. ImX[k] is the imaginary part, and it gives
the unnormalized amplitudes of the sine components.

The unscaled components are called basis functions:

ck[n] = cos(2πkn/N)

sk[n] = sin(2πkn/N)

for 0 ≤ k ≤ N/2.

In each function, the number of complete cycles over the N
input points is given by k. The basis for the zero-frequency
DC offset:

c0[n] = 1

At the other end of the spectrum:

cN/2[n] = cos(πn)

produces one cycle for every two samples, which is the
Nyquist frequency, regardless of the rate at which the input
is ultimately played. The DC offset and the Nyquist fre-
quency are always represented in the output, and frequen-
cies between them are added as N increases. s0[n] equals
zero and (because its phase causes all samples to coincide
with zero crossings) so does sN/2[n]. For this reason, both
these functions can be ignored.

The frequency variable in a graph of DFT output may be
labeled in one of four ways. When integers are displayed,
they give the indices of the amplitude functions, ReX[k]
and ImX[k]. When a range from zero to one-half is given,
it may be understood as a fraction of the sample rate; this
is written as ReX[f ] and ImX[f ], where f = k/N . A
range from zero to π is the same range using the natural
frequency, which expresses the frequency in radians per
second:

ω = 2πf =
2πk

N

This is written as ReX[ω] and ImX[ω]. Finally, the out-
put may be labeled in Hertz, though this is only meaning-
ful relative to a fixed sample rate. Otherwise the DFT is
independent of the sample rate, and produces meaningful

results regardless of the rate at which the input is actually
played.

Given the normalized component amplitudes ReX and
ImX, the input can be recreated with the DFT synthesis
equation:

x[i] =

N/2∑
k=0

ReX[k] · cos

(
2πk

N
i

)

+

N/2∑
k=0

ImX[k] · sin
(

2πk

N
i

)

This process is called the inverse DFT. For a given real or
imaginary component, it is most easily understood as the
summation of a number of sinusoids that have been scaled
by values in the spectrum; in this reading, each sinusoid
spans the range in the time domain covered by i, and the
summation occurs between N/2 + 1 sinusoids having fre-
quency k/N of the sampling rate. However, it can also be
read as a series of correlations between the spectrum itself
and N sinusoids associated with points in the time domain.
In this reading, each sinusoid spans the range in the fre-
quency domain covered by k, and has a frequency equal to
i/N of the sample rate.

The normalized amplitudes:

ReX[k] =


1

N
ReX[k], for k = 0, k = N/2

2

N
ReX[k], for 0 < k < N/2

ImX[k] = − 2

N
ImX[k]

The spectral density at a point in some frequency range
is the amount of amplitude at that point per unit of band-
width. The continuous functions ReX and ImX – which
are merely sampled by the DFT – describe the spectral den-
sity of the input. To convert the density near each point
to a sinusoidal amplitude, it is necessary to multiply the
density by the bandwidth associated with that point.

N/2 + 1 bands are defined by the DFT. The first and
last bands are centered around the zero frequency and the
Nyquist frequency, so their widths are half that of the other
bands; this gives the inner bands a width of 2/N of the to-
tal bandwidth, and the outer bands a width of 1/N . ImX
is negated for consistency with the complex DFT.
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5.1 Calculating the DFT

ReX and ImX can be calculated in any of three ways:
by solving simultaneous equations, with correlation, or by
using the FFT.

Though there are N +2 values in ReX and ImX together,
the first and last values of ImX are already known, so N
equations are sufficient to solve with simultaneous equa-
tions. These are produced by equating the values of x[n]
with values from the synthesis function. Because the basis
functions are linearly independent, the resultant equations
are independent as well. This method is not used in prac-
tice.

The DFT is described and calculated in the most general
sense with the DFT analysis equations:

ReX[k] =

N−1∑
i=0

x[i] · cos

(
2πi

N
k

)

ImX[k] = −
N−1∑
i=0

x[i] · sin
(

2πi

N
k

)

For a given real or imaginary component, this is most eas-
ily understood as a series of correlations between the time
domain signal and N/2+1 sinusoids associated with points
in the spectrum. In this reading, each sinusoid spans the
range in the time domain covered by i, and has a frequency
equal to k/N of the sample rate. However, it can also be
read as the summation of a number of sinusoids that have
been scaled by values in the time domain; in this reading,
each sinusoid spans the range in the spectrum covered by
k, and the summation occurs between N sinusoids having
frequency i/N of the sampling rate.

More generally, either the synthesis and the analysis equa-
tions can be understood as the summation of a group of
sinusoids, as scaled by samples in the opposing domain, or
as a set of correlations between frequencies associated with
points in one domain and a signal in the other.

Two functions are orthogonal if they are uncorrelated,
that is, if the sum of their products over some range is
zero. Just as simultaneous equations are solvable only if
each is linearly independent, the correlation technique re-
quires that each basis function be orthogonal relative to all
others. Other orthogonal functions, including square and
triangle waves, can theoretically serve as basis functions.

5.2 Duality

These synthesis and analysis functions are very similar in
structure, and in the complex DFT, they are even more
similar. This symmetry between domain translations is
called duality.

Given an impulse input x[i] = a:

ReX[k] = a cos(2πki/N)

ImX[k] = −a sin(2πki/N)

When i is non-zero, ReX[k] and ImX[k] are sinusoids.
When i is zero, ReX[k] = a and ImX[k] = 0. Since con-
stant values are, in effect, zero-frequency sinusoids, and
since each point in the output also represents a sinusoid in
the input, it can be said that a single point on one side of
the process represents a sinusoid on the other.

Multiplication in the time domain represents convolution
in the frequency domain, as in AM synthesis. Conversely,
convolution in the time domain represents multiplication in
the frequency domain, as demonstrated by any filter and
the amplitude response it applies to the input spectrum.

5.3 Polar notation

Because:

cos(α+ β) = cosα cosβ − sinα sinβ

it is seen that:

M cos(ωt+ φ) = a cosωt− b sinωt

with:

a = M cosφ

b = M sinφ

Since a and b are constant with respect to t, any linear
combination of same-frequency sinusoids will produce an-
other same-frequency sinusoid with a different magnitude
and phase.

Because:

M =
√
a2 + b2

φ = arctan(b/a)

any DFT basis pair ReX[k] and ImX[k] can be represented
by a single polar form component having:

MagX[k] =
√

ReX[k]2 + ImX[k]2

PhX[k] = arctan

(
ImX[k]

ReX[k]

)



6 DFT APPLICATIONS 9

This is analogous to converting a rectangular vector with
coordinates ReX[k] and ImX[k] to a polar vector. Con-
versely, results in polar form can be converted to rectan-
gular coordinates with:

ReX[k] = MagX[k] cos(PhX[k])

ImX[k] = MagX[k] sin(PhX[k])

The polar representation is often easier to understand;
MagX provides a single amplitude for each frequency k,
and the phase graph provides useful information.

By convention, the magnitude in polar coordinates is not
allowed to be negative; when a negative value would oth-
erwise be necessary, the phase is increased or decreased by
π. This can produce discontinuities in DFT phase output.

6 DFT applications

Increasing the sample count improves the frequency resolu-
tion of DFT output, but it does not remove noise from the
results; for this, it is necessary to process the output with
a low-pass filter. Alternatively, the input can be divided
into a number of shorter segments, each of these can be
processed with the DFT, and their results averaged; this
reduces noise by the square root of the segment count. In
both cases, noise is reduced at the cost of frequency reso-
lution.

White noise is uncorrelated from sample to sample, and
contains all frequencies at the same amplitude. It appears
in DFT output as a relatively flat feature running across
the frequency range. Near the Nyquist frequency, antialias-
ing filter roll-off will be seen. Pink noise or 1/f noise also
contains all frequencies, but its spectral density is 1/f . It
is frequently found in natural systems.

To distinguish components that are very near in frequency,
it is first necessary that enough input be processed to pro-
duce distinct basis functions near the components. It is also
necessary that the input cover a sufficient length of time,
since similar frequencies present similar profiles when the
span is short.

DFT input is theoretically infinite in length, and if it could
be processed as such, the output would contain infinitely
narrow peaks at each input component. Processing a finite
sample implicitly multiplies the infinite signal by a finite
window. When signals are multiplied, their spectra are
convolved; this replaces the narrow peaks with images of
the window spectrum. The finite sample count also quan-
tizes the spectrum. Increasing the sample count improves

the resolution, even when the additional samples are out-
side the window, and thus zero. Though this adds no infor-
mation to the calculation, it increases the number of basis
functions, and decreases their spacing. Of course, the zero
samples do not need to be correlated with the basis func-
tions; this is merely a way of increasing resolution within
the framework as generally defined.

When an input component fails to align with a single basis
function, the output contains a shorter, wider peak between
the neighboring basis frequencies, with rounded tails sur-
rounding it. The tails represent spectral leakage, and their
shape and relative amplitude is determined by the spec-
trum of the window. A rectangular window produces the
narrowest peak, but it also produces tails with the greatest
amplitude. The Blackman window produces low-amplitude
tails, but it also creates a wide peak. The Hamming win-
dow produces tails of moderate amplitude and a peak of
moderate width.

6.1 Frequency response

Just as the effect of a linear system x[n] ⇒ y[n] is defined
by its impulse response, h[n]:

x[n] ∗ h[n] = y[n]

it is also defined by its frequency response H[f ], which
describes the way the system changes the amplitude and
phase of cosine input components:

X[f ]×H[f ] = Y [F ]

The frequency response is the Fourier transform of the im-
pulse response. As a result, convolution in the time domain
is equivalent to multiplication in the frequency domain, and
vice versa.

Although the impulse response is a discrete signal, a sys-
tem’s frequency response is necessarily continuous, since
any frequency might be input to the system; a finite-length
DFT merely samples the actual response. Padding the
impulse response with zeros before the DFT produces a
smooth curve that approaches the actual shape.

In polar form, the product of two spectra is found by mul-
tiplying magnitudes and adding phase values:

Mag Y [f ] = MagX[f ] ·MagH[f ]

PhY [f ] = PhX[f ] + PhH[f ]
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Conversely, a quotient is produced by dividing and sub-
tracting:

MagH[f ] =
Mag Y [f ]

MagX[f ]

PhH[f ] = PhY [f ]− PhX[f ]

In rectangular form, the product:

ReY [f ] = ReX[f ] · ReH[f ]− ImX[f ] · ImH[f ]

ImY [f ] = ImX[f ] · ReH[f ] + ReX[f ] · ImH[f ]

and the quotient:

ReH[f ] =
ReY [f ] ReX[f ] + ImY [f ] ImX[f ]

ReX[f ]2 + ImX[f ]2

ImH[f ] =
ImY [f ] ReX[f ]− ReY [f ] ImX[f ]

ReX[f ]2 + ImX[f ]2

6.2 Convolution with the DFT

Convolution can be performed by multiplying X[f ] by H[f ]
and then resynthesizing with the inverse DFT; when the
FFT is used, this can be much faster than direct convo-
lution. Deconvolution produces x[n] from y[n] and h[n];
it can be performed by dividing Y [f ] by H[f ] and then
resynthesizing.

Convolving a signal of N samples with one of M samples
produces an output of N +M −1 samples. Using the DFT
to perform convolution produces an output of max(N,M)
samples. If Nu and Mu are the unpadded lengths of the
two signals, and if Nu+Mu−1 is greater than max(N,M),
the inverse DFT will be too short to show the convolved
signal accurately. As seen from the synthesis function,
the inverse DFT repeats after N samples, since the ba-
sis functions themselves repeat. If the output length is too
short to accommodate Nu + Mu − 1, circular convolu-
tion will occur; the end of the ideal convolved signal will
overlap the beginning to produce a periodic signal of length
max(N,M). This is avoided by padding the input and the
impulse response with zeros until max(N,M) equals or ex-
ceeds Nu +Mu − 1.

7 Properties of the Fourier trans-
form

Using the Fourier transform, if x[n] ⇒ X[f ], it must be
true that kx[n] ⇒ kX[f ], since all input components are

scaled evenly by k. From this it follows that the transform
is homogeneous. In rectangular form, both the real and
imaginary values are multiplied by k; in polar form, only
the magnitude is.

If a[n]⇒ A[f ], b[n]⇒ B[f ], c[n]⇒ C[f ], and:

a[n] + b[n] = c[n]

it follows that:

ReA[f ] + ReB[f ] = ReC[f ]

ImA[f ] + ImB[f ] = ImC[f ]

since the cosine and sine components at each frequency
combine without affecting the others. This shows that the
Fourier transform is additive. Only in rectangular form can
the real and imaginary values be added; this is not possible
in polar form because their phases might differ.

Since the Fourier transform is both homogeneous and ad-
ditive, it is also linear. It is not shift invariant, however. If
f is the frequency as a fraction of the sample rate, and:

x[n]⇒ MagX[f ] and PhX[f ]

it must be true that:

x[n+ s]⇒ MagX[f ] and PhX[f ] + 2πfs

This follows from the fact that, for frequency F in cycles
per second, the angular frequency, in radians per second,
is 2πF . If Fs is the sample rate, then the time represented
by s:

t = s/Fs

Multiplying the angular frequency by time produces the
angular displacement:

θ = 2πFt =
2πF

Fs
s

Since F/Fs = f :

θ = 2πfs

As s increases, the signal shifts to the left, and the slope of
the phase graph PhX[f ] + 2πfs increases. The change in
slope is consistent with the fact that, for a given time dis-
placement, the phase change is greater for high frequency
components, since they have shorter periods.

By definition, all basis functions complete a whole number
of cycles within the span covered by the DFT; therefore,
all PhX slopes produced by various s = kN are equivalent
when k is a whole number. In particular, at each frequency
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in the DFT output, the phase of these graphs will differ by
an integer multiple of 2π. Alternatively, because DFT in-
put is implicitly periodic, increasing s causes samples near
the beginning of the input to be wrapped to the end, and
when k is a whole number, the input is wrapped back to
its original position. It would seem that points between
the DFT frequencies differ by non-integer multiples, but it
must be remembered that the DFT produces point values,
not functions, and that graphs of DFT output are merely
interpolations.

A signal with left-right symmetry at any point is said to be
a linear phase signal, and its phase graph is a straight line
over f . A signal that is symmetric about the zero sample
is called a zero phase signal, and the slope of its phase
graph is zero. Because DFT input is periodic, a signal
that is symmetric about sample N/2 is necessarily sym-
metric about zero as well. Signals without even symmetry
have non-linear phase, and their phase graphs are not
straight.

The spectral characteristics that produce sharp rising or
falling edges are concentrated in the phase, since edges are
created when multiple components rise or fall at the same
time.

Given:

X[f ] = ReX[f ] and ImX[f ]

= MagX[f ] and PhX[f ]

the complex conjugate of X[f ]:

X∗[f ] = ReX[f ] and − ImX[f ]

= MagX[f ] and −PhX[f ]

Negating the phase values reverses the direction of the sig-
nal in the time domain, so if x[n] ⇔ X[f ], then x[−n] ⇔
X∗[f ]. This relates the convolution a[n]∗b[n]⇔ A[f ]×B[f ]
with the correlation a[n] ∗ b[−n]⇔ A[f ]×B∗[f ].

When spectra are multiplied, their magnitudes are mul-
tiplied and their phases added. Given any signal x[n], a
zero phase signal can be produced with X[f ]×X∗[f ], since
this cancels all phase values. The new signal must equal
x[n]∗x[−n], so convolving any signal with its reverse image
produces a signal that is symmetric about the zero sample.

Time domain aliasing results during the inverse DFT
when modifications to the frequency domain produce a new
ideal signal with length greater than N ; because the sig-
nal is implicitly periodic, the end overlaps the beginning.
Circular convolution is an example of this type of aliasing.

Mathematically, the frequency range from zero to the
Nyquist frequency is mirrored around the zero sample, and
this symmetrical image is repeated in both positive and
negative directions. Proceeding from zero in the positive
direction, the audible spectrum is repeated once in the for-
ward direction, once in reverse, again in the forward di-
rection, and so on. The frequency spectrum as a whole is
symmetric about zero, giving it even symmetry. When a
component is decreased below zero or increased above the
Nyquist frequency, its mirror image in the audible range
moves in the opposite direction, making it seem that the
frequency has been ‘reflected’. The curves of the negative
and higher positive frequencies fit the input samples with
the same precision that the audible frequencies do.

The phase range from zero to the Nyquist frequency also
repeats this way, but the reversed images are also negated
in sign. This gives the phase spectrum rotational or odd
symmetry. Phase components also reflect from the zero
frequency and the Nyquist frequency.

When two spectra are convolved, frequency zero in one of
them is superimposed over frequencies in the other; this
transposes the entire spectrum, causing negative frequen-
cies to enter the audible range. This explains why am-
plitude modulation produces the sums and differences of
the input frequencies: the sums are created when positive
frequencies are shifted to new locations relative to a fre-
quency in the other signal, while the differences are created
when negative frequencies are shifted this way. The region
in the new spectrum corresponding to previously negative
frequencies is called a lower sideband; the region corre-
sponding to positive frequencies is called an upper side-
band.

If a continuous signal is ‘expanded’ in time, the spectrum
will be compressed within the frequency range by a like
amount; specifically, given x(t)⇔ X(f):

x(kt) ⇔ 1

k
×X(f/k)

An analogous relationship applies to discrete signals. Ex-
panding the signal relative to the sample rate is comparable
to sampling the original signal at a higher sample rate.

More generally, events that happen faster are composed of
higher frequencies. In the extreme case, the spectrum of
an impulse is found to be a constant amplitude covering all
frequencies. Compressing a signal in the time domain can
cause aliasing in the frequency domain; conversely, com-
pressing a signal in the frequency range can cause aliasing
in the time domain.

Just as the resolution of the spectrum can be improved by
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padding the time domain with zeros before the DFT, the
resolution of the signal can be improved by padding the end
of the frequency domain with zeros before the inverse DFT.
Because the synthesis function always produces frequencies
that run from zero to fs, padding lowers the effective fre-
quencies of the non-zero values. The new signal can be
interpreted as a spectrum-perfect resampling of the origi-
nal input at a higher sample rate. As when DFT input is
padded, no information is introduced; instead, the existing
components are sampled with greater precision. Interpo-
lation can also be performed by inserting zeros between
existing samples and then low-pass filtering.

Since the time and frequency domain representations are
equivalent, they must have the same energy. This yields
Parseval’s Relation:

N−1∑
i=0

x[i]2 =
2

N

N/2∑
k=0

MagX[k]2

7.1 Discrete time Fourier transform

The discrete time Fourier transform processes aperiodic
discrete signals. Padding DFT input with zeros increases
the input length and the number of basis functions while
decreasing the distance between each function; by exten-
sion, padding until the signal has infinite length turns it
aperiodic and makes the output continuous. This produces
the DTFT analysis equations:

ReX(ω) =
1

π

∞∑
i=−∞

x[i] cos(ωi)

ImX(ω) = − 1

π

∞∑
i=−∞

x[i] sin(ωi)

The input remains discrete, and the output periodic. In
the DFT analysis equations, frequency is represented by
2πk/N , with k ranging from zero to N/2. For brevity, the
frequency is here represented with the natural frequency ω,
which ranges from zero to π.

The DTFT synthesis equation:

x[i] =

∫ π

0

ReX(ω) cos(ωi)− ImX(ω) sin(ωi) dω

The DFT characterizes both domains with samples. If the
time domain is described with an equation, the DTFT al-
lows the frequency domain to be described in like manner.
The DTFT does nothing to reduce aliasing, however, as
the input remains in discrete form.

8 Fourier transform pairs

If x[n] ⇔ X[f ], then x[n] and X[f ] are Fourier trans-
form pairs. Unless aliasing interferes, if waveform a[n] in
the time domain produces b[f ] in the frequency domain,
then b[n] in the time domain will produce something very
similar to a[f ].

8.1 Delta function

An impulse in one domain produces a sinusoid with possi-
bly zero frequency in the other.

An impulse at sample zero in the time domain produces a
spectrum with constant magnitude and zero phase across
all frequencies. This conforms with the observation that
compression in one domain causes expansion in the other;
an impulse is a maximally compressed signal, and a flat
line is a maximally expanded spectrum. As the impulse is
shifted to the right, the slope of the phase decreases, while
the magnitude remains unchanged.

At sample zero, an impulse produces a spectrum with con-
stant non-zero real values and imaginary values equal to
zero. As the impulse is shifted to the right, the real values
take the form of a cosine wave, and the imaginary values,
that of a sine. In both cases, the number of cycles spanning
the frequency range from zero to the sampling rate is equal
to the sample number where the impulse occurs. This is
consistent with the way the analysis equations work; just
as the synthesis function mixes a number of sinusoids with
amplitudes equal to values in the spectrum, the analysis
equation mixes sinusoids with amplitudes equal to succes-
sive values in the signal and frequencies proportional to the
sample number.

8.2 Sinc function

The normalized sinc function:

sinc(x) =


sin(πx)

πx
, for x 6= 0

1, for x = 0

A rectangular pulse in the time domain produces a sinc
waveform in the frequency domain, and vice versa. When
the pulse is centered around sample zero, the phase al-
ternates regularly between zero and π; this represents the
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negative ranges in the sinc function, since the magnitude
is meant to remain positive.

The sinc function has infinite width, so aliasing always re-
sults. Given an N point signal with a zero-centered unit
amplitude rectangular pulse M samples wide:

MagX[k] =


∣∣∣∣ sin(πkM/N)

sin(πk/N)

∣∣∣∣ , for k 6= 0

M, for k = 0

The sine term in the denominator is the result of aliasing;
without aliasing, the denominator would be πk/N . sin(x)
is very close to x when x is near zero, so at low frequen-
cies, the aliasing is minimal; at the Nyquist frequency, the
magnitude is approximately 57% greater.

Using the DTFT:

MagX(f) =


∣∣∣∣ sin(πfM)

sin(πf)

∣∣∣∣ , for f 6= 0

M, for f = 0

The zero values in the magnitude are found at frequen-
cies that fit an integer number of cycles within the pulse
width; because the sum of a sinusoid over one cycle is zero,
these frequencies have no correlation with the pulse. By
the same token, an impulse must contain all frequencies,
since a single sample can be correlated with any frequency.

When performing the DFT, selecting a finite set from the
theoretically infinite range of input samples implicitly con-
volves the signal spectrum with the sinc function. Increas-
ing the number of input samples lengthens the rectangu-
lar window, which compresses the sinc function and causes
the spectrum at each component frequency to approach
the impulse ideal. Padding with zeros merely increases the
resolution.

A rectangular pulse in the frequency domain corresponds
to a sinc function in the time domain, and when the in-
verse DFT is used, time domain aliasing necessarily re-
sults. Given a unit-amplitude pulse covering frequencies
zero through M − 1, the aliased time domain signal:

x[i] =


2M − 1

N
, for i = 0

1

N
· sin(2πi(M − 1/2)/N)

sin(πi/N)
, for i 6= 0

Using the inverse DTFT eliminates aliasing, since the time
domain is infinite. If the pulse has unit amplitude and runs

from zero to frequency fc:

x[i] =


2fc, for i = 0

sin(2πfci)

πi
, for i 6= 0

This is the impulse response of an ideal low-pass filter, and
is used to implement the windowed-sinc filter.

8.3 Other transform pairs

Convolving a rectangular pulse of length M with itself pro-
duces a triangular pulse of length 2M − 1. Multiplying
in the frequency domain produces a spectrum that is the
square of the sinc function representing the original pulse.

When aliasing is ignored, a Gaussian curve in the time do-
main produces a zero-centered Gaussian in the frequency
domain. If σt and σf are the standard deviations in the
time and frequency domains, then 1/σt = 2πσf .

A Gaussian burst is the product of a Gaussian curve and
a sine wave. Because the sine wave produces an impulse
within the spectrum, the implicit convolution moves the
Gaussian to a new position equal to the frequency of the
sine.

8.4 Gibbs effect

The Gibbs effect is the overshoot and ringing that oc-
curs near sharp edges in the time domain when an ideal
waveform is approximated with additive synthesis. As fre-
quency components are added, the width of the overshoot
decreases, but the amplitude remains approximately con-
stant. In a continuous signal, the overshoot never decreases
significantly in height, but its width approaches zero, giv-
ing it zero energy.

8.5 Harmonics

In a periodic signal with fundamental frequency f , all com-
ponent frequencies must be integer multiples of f , since any
other frequency would produce a period that does not fit
evenly within that of the signal. Conversely, adding two
signals can only produce a period equal to or longer than
the source periods, and a fundamental frequency equal to
or lower than the source frequencies.
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If a recurring waveform has been modified with clipping
or any other waveshaping function, any new frequencies in
the spectrum must be harmonics, since the fundamental
frequency has not changed. If the waveform has odd sym-
metry, such that the peaks and troughs present identical
profiles, the signal will contain only odd harmonics.

A discrete signal in either domain necessarily represents
harmonics in the other, since the synthesis and analysis
functions use only harmonics, and there is no way to rep-
resent between-sample frequencies. This explains why the
DFT is periodic in the time domain, while the DTFT is
not. The DFT represents the signal as a finite number of
harmonics that necessarily repeat when the fundamental
repeats. By contrast, the DTFT represents the signal as an
infinite number of frequencies. If this signal had a period,
it would be the least common multiple of the component
periods. Since there is no finite multiple of all possible
periods, so there is no fundamental period or frequency.

8.6 Chirp signals

In the time domain, a chirp signal is a short oscillating
pulse that increases in frequency and then rapidly fades
out. Its spectrum has unit magnitude, like that of a unit
impulse, with a parabolic phase curve:

PhX[k] = αk + βk2

The value α determines the slope of the phase graph, and
thus the position of the chirp. α and β must be chosen
such that the phase at the zero and Nyquist frequencies is
a multiple of 2π.

In radar systems, the power required to produce a pulse
varies inversely with the pulse length; longer signals, like
the chirp, thus require less power than would a single im-
pulse. When signals are convolved, their magnitudes are
multiplied and their phases added. Convolving a chirp with
its own complex conjugate thus produces a unit magnitude
and a constant zero phase, which is the spectrum of an
impulse. A radar system can broadcast a chirp and then
convolve the echo to produce impulses representing the tar-
gets of the pulse.

9 Fast Fourier transform

Calculating the DFT with correlation produces O(n2) time
complexity; the same results are produced by the FFT in

O(n log n). This relationship holds for the inverse opera-
tions as well.

The complex DFT accepts N complex numbers, with the
real parts set to the signal values, and the imaginary parts
set to zero. It also returns N complex numbers, with the
first N/2+1 of these corresponding to the values produced
by the real DFT, and the remaining values representing
negative frequencies.

The FFT derives from the complex DFT. The analysis
function in the complex DFT:

X[k] =

N−1∑
i=0

x[i] · e
−2πj
N ik

can be divided into two sums, one that covers the even
elements, and one that covers the odd:

X[k] =

N/2−1∑
i=0

x[2i] · e
−2πj
N (2i)k

+

N/2−1∑
i=0

x[2i+ 1] · e
−2πj
N (2i+1)k

If E[k] is the DFT of the even elements, and O[k] that of
the odd, it follows that:

X[k] = E[k] + e
−2πj
N k ·O[k]

If N is a power of two, the process can be applied recur-
sively to produce N/2 DFTs of length two, which can then
be calculated directly.

9.1 Real FFT

Ordinarily, the real parts of the complex DFT input are
used to store the time domain values, while the imaginary
parts are set to zero; this produces even symmetry in the
real output and odd symmetry in the imaginary output. If
the time values are instead stored in the imaginary part,
the imaginary output displays even symmetry, while the
real output displays odd.

The real FFT exploits this relationship by storing the
even input samples in the real parts of the input, and the
odd samples in the imaginary parts; this halves the FFT
length and produces spectra that are the sum of the even
and odd sample spectra. Even/odd decomposition splits
a signal into two parts, one with even symmetry, and one
with odd. Applying this to the FFT output produces the
spectra of the original even and odd inputs; these can then



10 CONTINUOUS SIGNAL PROCESSING 15

be joined the way even and odd sample spectra are joined
in the FFT, producing finished output with almost twice
the speed of a normal FFT.

10 Continuous signal processing

Linear electronic components include resistors, capacitors,
and inductors. When a linear circuit accepts a very short
pulse, the shape of the output is determined by the con-
struction of the circuit, not the shape of the pulse, and the
amplitude varies with the net positive area of the pulse.
Any input short enough to produce this behavior can be
called an impulse.

The continuous delta function δ(t) is an impulse at time
zero with an infinitely short length and an area of one. Be-
cause the width is infinitesimal, the amplitude is theoreti-
cally infinite.

10.1 Convolution

At each point, the effect of convolution can be visualized
with a reversed image of the impulse response. After align-
ing the end with the current input sample, all samples are
multiplied with the corresponding input values and then
summed; this accounts for the way that later samples in
the response are scaled by previous input values. Convo-
lution between continuous signals can be understood in a
like manner:

y(t) = x(t) ∗ h(t) =

∫ ∞
−∞

x(t− τ)h(τ) dτ

Because convolution is commutative, this can also be writ-
ten:

y(t) =

∫ ∞
−∞

x(τ)h(t− τ) dτ

Continuous convolution can be visualized with a reversed
image of the continuous impulse response, its end advanc-
ing through the input as t increases, with the output at
each point equal to the area under the product of the sig-
nals. Typically, the integral must be solved by dividing the
problem into regions, one for the range where the impulse
response overlaps the beginning of the input, one where
the signals completely overlap, and one where the response
overlaps the end. In all cases the integration range is cho-
sen to cover the intersection of the signals, where both are
defined.

Complex convolution problems can be solved by applying
a linear process that simplifies one of the signals, convolv-
ing, and then reversing the simplifying operation. Inte-
gration and differentiation are themselves linear processes,
since they are both homogeneous and additive. Output can
therefore be calculated by convolving with the derivative
of one of the signals, and then computing the integral of
the convolution. The derivative of a rectangular pulse is
a single positive impulse followed by an offsetting negative
impulse. Convolving an input with this response produces
one image of the input combined with a time-shifted and
negated image; integrating this output over two ranges pro-
duces the final result. When this is done, the DC offset
must be calculated by other means, since it is lost during
differentiation.

10.2 Fourier transform

The Fourier transform applies to signals that are continu-
ous and aperiodic, like the impulse response of a filter. The
Fourier transform synthesis equation:

x(t) =

∫ ∞
0

ReX(ω) cos(ωt)− ImX(ω) sin(ωt) dω

The Fourier transform analysis equations:

ReX(ω) =
1

π

∫ ∞
−∞

x(t) cos(ωt) dt

ImX(ω) = − 1

π

∫ ∞
−∞

x(t) sin(ωt) dt

10.3 Fourier Series

The Fourier series applies to signals that are continuous
and periodic; these contain only harmonic frequencies,
since enharmonic cycles would not fit within the signal’s
period.

Given fundamental frequency f , the Fourier series syn-
thesis equation:

x(t) = ReX[0] +

∞∑
k=1

ReX[k] cos(2πfkt)

−
∞∑
k=1

ImX[k] sin(2πfkt)
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Given signal period T = 1/f , the Fourier series analysis
equations:

ReX[0] =
1

T

∫ T

0

x(t) dt

ReX[k] =
2

T

∫ T

0

x(t) cos

(
2πkt

T

)
dt

ImX[k] =
−2

T

∫ T

0

x(t) sin

(
2πkt

T

)
dt

ReX[0] gives the DC offset, while ImX[0] is always zero.
Since the signal is periodic, the correlations need only be
calculated over a single period.

Given a pulse train with amplitude A, pulse width w, and
duty cycle d = w/T :

ReX[0] = Ad ReX[k] =
2A

πk
sin(πkd)

ImX[k] = 0

The pulses rise from zero, so the signal has a DC offset that
is proportional to the duty cycle. The first pulse is centered
around time zero, and the resultant symmetry produces a
zero phase spectrum, which itself yields a zero imaginary
spectrum, since ImX(t) = MagX(t) · sin(PhX(t)) is zero
for zero PhX(t). This can also be understood geometri-
cally: since the waveform is symmetrical about the time
axis, it must consist of even components, such as cosine
waves. If the waveform had odd symmetry, it would in-
stead contain odd components, like sine waves.

Given a square wave:

ReX[k] =
2A

πk
sin

(
πk

2

)
ImX[k] = 0

Given a triangle wave:

ReX[k] =
4A

(πk)2
sin

(
πk

2

)
ImX[k] = 0

Given a sawtooth wave:

ReX[k] = 0 ImX[k] =
A

πk

Given a rectified sine wave:

ReX[0] =
2A

π
ReX[k] =

−4A

π(4k2 − 1)

ImX[k] = 0

In electronics, the Fourier series is used to implement fre-
quency multiplication. A lower-frequency component
like a crystal is used to produce a sinusoidal output, which
can be clipped or squared to introduce harmonics that are
precise multiples of the fundamental. These are then iso-
lated with a band-pass filter.

11 Digital filters

Analog filters are fast, and can be made to handle a wide
range of amplitudes and frequencies, but their filtering
characteristics are limited by the accuracy and stability
of their components. Digital filters can produce vastly su-
perior filtering characteristics.

A filter’s step response or edge response is the out-
put produced by a step input; it shows how time domain
information is modified by the filter. Because an impulse
is the derivative of a step, the step response is equal to
the integral of the impulse response. A filter can be com-
pletely described by its impulse response, step response, or
frequency response, and if any one of these is known, the
others can be calculated.

Finite impulse response filters are implemented with
processes equivalent to convolution. A filter can also be im-
plemented with recursion, which weights and sums input
values the way convolution does, but also includes weighted
output values. This creates an infinite impulse response
filter, with an impulse response containing exponentially-
decaying sinusoids. The characteristics of an IIR filter are
defined by its recursion coefficients.

11.1 Filter characteristics

In the time domain, an ideal filter exhibits fast step re-
sponse and no overshoot, and has linear phase. In the
frequency domain, it exhibits fast roll-off, strong stopband
attenuation, and has a flat passband. Good characteristics
in the time domain produce poor results in the frequency
domain, and vice versa.

The speed of a step response is described by its rise time,
often defined as the time to transition from 10% to 90% of
the rise. To discern short time domain events in a filtered
signal, the step response must be shorter than the events
themselves.

Overshoot in the step response distorts amplitudes in the
time domain.

An impulse response with even symmetry produces a step
response with odd symmetry about its middle point; a filter
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with such a response has linear phase. Given a fixed time
displacement, angular displacement varies linearly with fre-
quency. Therefore, a linear phase filter is one that displaces
all frequencies by the same amount of time, causing no
phase distortion.

11.2 Manipulating filters

A filter of one type can be transformed into another with
spectral inversion; this is performed by negating the val-
ues in a symmetrical impulse response h[n] and then adding
one to the sample at the center of symmetry. Negating
h[n] reverses the original output vertically; adding one in-
troduces the delta function, so that an unprocessed image
of the input is included:

y[n] = x[n] ∗ (δ[n]− h[n])

This causes frequencies that would have been passed to be
cancelled instead. The frequency response of the new filter
is reversed vertically relative to the original, so that pass-
bands become stopbands over their original ranges, and
stopbands become passbands. For this to be effective, the
original filter must not alter the phase of low frequency
components, or they will be incompletely cancelled when
combined with the input. The delta impulse is added to
the middle of the response to maintain the even symmetry
that this implies.

Another technique is spectral reversal; it is performed
by negating the sign of alternating samples in the impulse
response. This is equivalent to multiplying the impulse
response by a Nyquist-frequency sinusoid, which implicitly
convolves the frequency response with that frequency, caus-
ing the original response to be replaced by its own negative
frequency range. This reverses the frequency response hor-
izontally, causing passbands on one side to become pass-
bands of like size and position on the other.

A band-pass filter can be constructed by convolving a low-
pass filter and a high-pass filter with overlapping pass-
bands, such that their effects are processed in series:

y[n] = x[n] ∗ (hL[n] ∗ hH [n])

A band-stop filter can be constructed by adding a low-pass
filter and a high-pass filter without overlapping passbands,
such that their effects are processed in parallel:

y[n] = x[n] ∗ (hL[n] + hH [n])

Filters are selected according to their intended use and the
desired implementation. In the time domain, filters are

used to smooth or shape waveforms, or remove DC offsets;
in the frequency domain, they are used to isolate com-
ponents. Certain special applications also exist, such as
deconvolution:

Domain Convolution Recursion
Time Moving average Single pole
Frequency Windowed-sinc Chebyshev
(other) Custom FIR Iterative design

Convolution produces superior filtering characteristics, but
it is slower.

12 Moving average filters

The moving average filter optimally removes random
noise while maintaining a fast step response:

y[i] =
1

M

M−1∑
j=0

x[i+ j]

To produce a filter that does not shift the output relative
to the input, the averaging window can be made symmetric
about the input sample.

The sum within the average implicitly convolves the input
with a unit-area rectangular pulse, producing a flattened
aliased sinc function in the frequency response:

H[f ] =
1

M

sin(πfM)

sin(πf)

Input noise is attenuated by a factor equal to the square
root of M . The rise time from 0% to 100% is equal to
M , since that is the time for the output to become sta-
ble after a step transition. Because averaging optimally
removes random variations, this filter produces the lowest
possible noise for a filter with that rise time. The filter is
very good at smoothing, but it has a low roll-off and very
poor stopband attenuation.

The moving average filter can be greatly optimized with a
recursive implementation. After calculating the first out-
put sample:

y[i] = y[i− 1] +
x[i+M − 1]− x[i− 1]

M

Unlike most recursive implementations, this does not pro-
duce an infinite impulse response.
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12.1 Similar filters

A multiple-pass moving average filter is implemented
by passing the input two or more times through a moving
average filter; alternatively, the filter kernel can be con-
volved with itself to produce the same effect with a single
operation. Convolving a rectangular pulse with itself pro-
duces a triangular pulse with length 2M − 1; as the pulse
is further convolved, its length increases, and its shape ap-
proaches a Gaussian curve. Each iteration smooths the
corners of the step response, and causes the frequency re-
sponse to be multiplied by the original moving average fre-
quency response.

Compared to the moving average filter, the multiple-pass
moving average, the Gaussian filter, and the filter produced
by the Blackman window produce similar noise reduction
for a given rise time, but offer better stopband attenuation.

13 Windowed-Sinc filters

Windowed-sinc filters have good frequency domain char-
acteristics, but they produce significant overshoot in the
step response, and they are slow when implemented with
convolution. Performance can be improved with FFT con-
volution.

In the frequency domain, the ideal low-pass filter is a rect-
angle centered around zero. Applying the inverse DFT
produces an impulse response containing the sinc function:

h[i] =
sin(2πfCi)

iπ

with fC specifying the middle of the transition band, where
amplitude is one-half. The sinc function is infinite in
length, so it must be truncated or windowed, which pro-
duces a windowed-sinc filter. Truncation convolves the
frequency response with a sinc function, producing ripple
in the pass and stop bands and reducing the stopband at-
tenuation to -21dB (8.9% of amplitude). The frequency
response of a windowed-sinc filter has odd symmetry, so
passband ripple, as a percentage of amplitude, is equal to
the stopband level.

If M is an even number, and the sinc function is symmet-
ric about M/2, and truncated below sample zero and above
sample M , the kernel can be multiplied in the time domain
by a Blackman window:

w[i] = 0.42− 0.5 cos
(2πi

M

)
+ 0.08 cos

(4πi

M

)

This largely eliminates overshoot and stopband ripple, and
improves the stopband attenuation to -74bB (0.02% of am-
plitude). It also rounds the corners in the frequency re-
sponse, and decreases the roll-off to 40% of the value pro-
duced by truncation.

The Hamming window has a similar effect:

w[i] = 0.54− 0.46 cos
(2πi

M

)
The roll-off is 20% faster than the Blackman window, but
the stopband attenuation drops to -53bB (0.2% of ampli-
tude).

The Bartlett window is a simple triangle covering the
sinc range. Its roll-off is similar to the Hamming window,
and its stopband attenuation is -25dB (5.6% of amplitude).

The Hanning or raised cosine window:

w[i] = 0.5− 0.5 cos
(2πi

M

)
This also has roll-off similar to the Hamming window, and
stopband attenuation of -44dB (0.63% of amplitude).

In any windowed-sinc filter, expanding the sinc function
and its containing window compresses the transition band,
which increases roll-off. Though the exact width depends
on the choice of window, the width of the transition band,
as a fraction of the sample rate:

BW ≈ 4

M

The shape and width of the transition do not vary with the
cutoff.

In general, the kernel for a windowed-sinc filter:

h[i] =


K

sin(2πfC(i−M/2))

i−M/2
· w[i], for i 6= 0

2πfCK · w[i], for i = 0

K is selected to provide unity gain at the zero frequency;
this is done by summing the unnormalized values in the
kernel, and then dividing the values by the sum.

Stopband attenuation can be improved by passing the sig-
nal through the filter more than once; with each pass the
effective roll-off is lowered, but another increment of the
original attenuation is achieved. This can also be accom-
plished by convolving the kernel with itself.
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14 Custom filters

The inverse DFT allows a filter to be constructed for almost
any frequency response. First, the spectrum is sampled in
magnitude and phase or in its real and imaginary parts.
As always, when sampling the phase, the first and last val-
ues must be multiples of 2π. After the inverse DFT, the
impulse response can be shifted, truncated, and windowed.
Depending on the original frequency response, time domain
aliasing may result in the new kernel. Truncation and win-
dowing can reduce the effect of this aliasing, and shorten
the required convolution.

14.1 Deconvolution

If events in some signal are contaminated by an unwanted
convolution, deconvolution can be used to restore them.

To start with, the unwanted convolution must be known;
then a pulse must be chosen to represent the reconstructed
events. After finding the frequency response of the convolu-
tion and the new pulse, the response of the pulse is divided
by that of the convolution to produce the frequency re-
sponse of a correcting filter. The inverse DFT is then used
to obtain an impulse response for this filter, which can be
truncated and windowed to produce a kernel.

The pulse used to represent the events must not be too
short, because short pulses require high frequency com-
ponents that presumably have low levels in the contam-
inated signal. This being the case, the correcting fre-
quency response would have to amplify these frequencies
very strongly, causing discrepancies between the estimated
convolution and the actual convolution to produce large
errors in the output.

If frequencies needed to reconstruct the signal have been
attenuated below the noise floor, adequate deconvolution
may not be possible. If frequency components have been
lost altogether, division by the contaminated frequency re-
sponse will produce bands with infinite gain; these areas
must be adjusted, or a longer pulse chosen.

Blind deconvolution is used when the unwanted convo-
lution is not known; it is generally performed by estimating
the convolution.

14.2 Optimal filters

Optimal filtering is used to separate a target signal from
noise. In the frequency domain, the noise spectrum will
overlap that of the target, making low-pass and high-pass
filters less effective.

A moving average filter provides the fastest step response
for a given amount of noise reduction.

A matched filter returns the correlation of the target pulse
with the input at each point; this optimizes the difference
between the peaks in the target signal and their back-
ground. It also changes the shape of the target pulse, but
the shape must have been known already to perform the
correlation.

If S[f ] is the frequency response of the target, and N [f ]
that of the noise, a Wiener filter has frequency response:

H[f ] =
S[f ]2

S[f ]2 +N [f ]2

Creating a custom filter from this response optimizes the
ratio of the target signal power to the noise power, over the
length of the signal.

15 FFT convolution

Real-time or other segmented input can be convolved with
the overlap-add method, which accepts a segment, pads
it with zeros to make room for the convolution, convolves,
and then adds the processed segment to the output. Each
segment has the same position in the output that it held in
the input, such that the beginning overlaps the tail added
to the previous segment by the convolution.

FFT convolution uses this technique to process long sig-
nals in less time than ordinary convolution. The desired
convolution is first translated to the frequency domain with
the FFT; the input is then segmented, and each segment
is also processed with the FFT. After multiplying the fre-
quency responses, the inverse FFT is used to produce an
output segment, which is made to overlap the segment be-
fore. For simplicity, the spectra are represented and mul-
tiplied as real and imaginary parts.

It may be impractical to multiply frequency responses un-
less their sample counts are identical, since interpolation
would otherwise be needed. To produce identical sample
counts, and to avoid circular convolution, the convolution
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kernel and the input segment must both be padded with
zeros before the FFTs until their lengths equal the same
number, a power of two greater than or equal to the length
of the segment plus that of the kernel, less one.

The time to process an ordinary convolution varies linearly
with the length of the kernel; the time for FFT convolu-
tion varies logarithmically. The implementations are said
to be equivalent when the kernel contains forty to eighty
samples; above that, the FFT is faster.

16 Recursive filters

A recursive filter is implemented with a recursion
equation, which incorporates one or more past outputs
in each current output value. Recursion creates a long im-
pulse response without requiring a lengthy convolution:

y[n] =a0x[n] + a1x[n− 1] + a2x[n− 2] + · · ·
+ b1y[n− 1] + b2y[n− 2] + · · ·

As always, passing the delta function gives the impulse
response of the filter, which in this case is typically an
exponentially-decaying oscillation. Because the response
never settles at zero, this is called an infinite impulse
response (IIR) filter. Among other methods, the coeffi-
cients can be calculated with the z-transform, which trans-
lates them to or from the frequency domain.

16.1 Single-Pole recursive filters

Single-pole recursive filters are equivalent to simple RC
networks; they are appropriate for DC removal, smoothing,
or other basic filtering operations. Given 0 < λ < 1, the
single-pole low-pass filter has coefficients:

a0 = 1− λ
b1 = λ

This produces the same effect as a first-order low-pass RC
circuit. In the output:

y[n] = (1− λ)x[n] + λy[n− 1]

= (1− λ)

∞∑
i=0

λix[n− i]

λ represents the decay constant. At any point, y[n] ap-
proaches a fixed value as x[n] is held constant:

L = lim
n→∞

y[n]

If a is the new value of x[n], L is produced by the sum of
a geometric series:

L = (1− λ)(a+ λa+ λ2a+ · · · )
L

1− λ
= a+ λa+ λ2a+ · · ·

Multiplying both sides by λ and subtracting the new ex-
pression truncates the series:

L

1− λ
− λ L

1− λ
= a

This yields:

(1− λ)
L

1− λ
= a

L = a

The single-pole high-pass filter is also equivalent to a
first-order RC circuit:

a0 =
1

2
(1 + λ)

a1 = −1

2
(1 + λ)

b1 = λ

Just as RC is the time for the corresponding RC circuit to
decay to 1/e of the starting voltage, d gives number of sam-
ples for output to decay to 1/e of the original amplitude,
after the input drops from a steady state to zero:

d = − 1

lnλ

This gives:

λ = e−1/d

Alternatively:

λ = e−2πfC

These relationships allow the coefficients to be set to
achieve a given rise time or a given cutoff. By equating
them, it is seen that the rise time increases as the cutoff
decreases:

d =
1

2πfC

Single-pole filters are very fast, but in general, they have
high roll-offs and very poor stopband attenuation. These
can be improved somewhat by passing the signal through
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the filter more than once, which effect can also be imple-
mented with coefficients drawn from the z-transform. For
a four-stage low-pass filter:

a0 = (1− λ)4

b1 = 4λ

b2 = −6λ2

b3 = 4λ3

b4 = −λ4

This is comparable to a Blackman or Gaussian filter, but
much faster.

16.2 Band-pass and band-stop filters

Given center frequency f , bandwidth BW at -3dB ampli-
tude, and:

R = 1− 3BW

K =
1− 2R cos(2πf) +R2

2− 2 cos(2πf)

it is possible to implement a band-pass filter with:

a0 = 1−K
a1 = 2(K −R) cos(2πf)

a2 = R2 −K
b1 = 2R cos(2πf)

b2 = −R2

For a band-stop or notch filter:

a0 = K

a1 = −2K cos(2πf)

a2 = K

b1 = 2R cos(2πf)

b2 = −R2

These filters have somewhat rounded corners in the fre-
quency domain; this can be partially amended by process-
ing the signal more than once. The step responses exhibit
moderate ringing.

16.3 Phase response

An impulse response that is symmetric about any sample
has linear phase; convolving a symmetrical pulse with such

a response will produce another symmetrical pulse. An im-
pulse response that is not symmetrical will have non-linear
phase, and convolution with a symmetrical pulse will nec-
essarily produce an asymmetrical pulse. While it is triv-
ial to produce FIR filters with symmetry, the impulse re-
sponse of a recursive filter is inherently asymmetrical, since
it approaches each steady state exponentially. For this rea-
son, analog filters cannot maintain the symmetry of input
pulses.

Bidirectional filtering is used to produce recursive filters
with zero phase. After a signal is filtered in the forward
direction, it is filtered again in reverse, as though the sig-
nal had been reversed, processed, and reversed again. To
implement this reverse filtering:

y[n] =a0x[n] + a1x[n+ 1] + a2x[n+ 2] + · · ·
+ b1y[n+ 1] + b2y[n+ 2] + · · ·

Conceptually, the two filter convolutions cause the for-
ward and reversed filters to be multiplied in the frequency
domain, which entails multiplying their magnitudes and
adding their phase values. Since reversing an impulse re-
sponse causes its phase spectrum to be negated, this cancels
all phase values, producing a zero-phase process.

If the input is segmented, the segments can be processed
and combined with the overlap-add method. Since the im-
pulse responses are technically infinite, the segments must
be truncated on both sides when output values reach suffi-
ciently low levels.

17 Chebyshev filters

The Chebyshev filter is a recursive filter that improves
roll-off by allowing ripple in the frequency domain. A Type
I Chebyshev filter allows no ripple outside the passband,
while a Type II filter allows no ripple outside the stop-
band. Elliptic filters allow ripple in either band. Allow-
ing no ripple at all produces a maximally flat or But-
terworth filter.

The coefficients of a Chebyshev filter are determined with
the z-transform. In Type I filters, increasing the roll-off
increases the amount of passband ripple, but good roll-off
can be achieved with as little as 0.5% ripple, this being
comparable to the precision of analog electronics. Setting
the cutoff near the middle of the frequency range produces
lower roll-offs.

In the z-transform, a filter’s characteristics are defined by a
rational expression of two complex polynomials. The roots
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of the numerator in this expression are known as zeros,
while the roots of the denominator are poles. The pole
count is always an even number. The filter’s roll-off in-
creases with the number of poles, as does the amount of
overshoot in the step response, this typically ranging from
5% to 30% in Type I. Step response overshoot is also af-
fected somewhat by the cutoff frequency.

As the pole count increases, the magnitude of the input
coefficients a0, a1, a2, · · · can decrease far below that of the
output coefficients, b1, b2, b3, · · · . Eventually the input val-
ues can be lost in the noise produced by rounding error
in the other calculations; when this happens, filter perfor-
mance degrades and the filter ultimately becomes unstable.
A filter with more than two poles is mathematically equiva-
lent to a series of two-pole filters, and explicitly processing
input with such a series produces the same output with less
rounding error.

18 Comparing filters

18.1 Digital and analog filters

The filtering characteristics of analog systems are limited
by the accuracy of their components; even a maximally
flat analog filter may produce passband ripple near 1%.
Digital filters can produce much flatter passbands, steeper
roll-offs, and better stopband attenuation; moreover, with
additional computing resources, their performance can be
improved to almost arbitrarily high levels. Digital filters
can produce symmetrical step responses and linear phase
output.

Analog systems generally have much higher dynamic
ranges, with a typical op amp producing noise of 2µV and
having a saturation level of 20V, for a range of ten mil-
lion. They can also operate at high frequencies that would
necessitate very high bit rates if sampling were used.

18.2 Windowed-Sinc and Chebyshev fil-
ters

Windowed-sinc filters and Chebyshev filters provide good
performance in the frequency domain, but the windowed-
sinc uses convolution, while the Chebyshev uses recursion.

Type I Chebyshev filters allow ripple in the passband,
though this can be eliminated by decreasing the roll-off.

Windowed-sinc filters provide similar roll-offs without pass-
band ripple, and when very precise frequency separation
is needed, it can be obtained by lengthening the impulse
response. Recursive filters, by contrast, are eventually con-
strained by rounding error. For a given roll-off, windowed-
sinc filters provide somewhat better stopband attenuation.
Recursive filters use much less CPU time, even when the
windowed-sinc is implemented with FFT convolution.

Both filters produce significant overshoot in the step re-
sponse, but the Chebyshev also has non-linear phase,
though this can be corrected with bidirectional filtering.

18.3 Moving average and single-pole fil-
ters

Moving average and single-pole filters operate well in the
time domain and much less well in the frequency domain.
The moving average filter produces a fast linear step re-
sponse. The single-pole filter produces an asymmetrical
step with non-linear phase, unless bidirectional filtering is
used, in which case two smooth corners are created. Both
filters require minimal CPU time.

19 Audio processing

Sound power level (SPL) is a measure of loudness rel-
ative to the weakest level discernible to human ears, at
0dB SPL. The loudest distinct level is approximately 120dB
SPL, and damage can occur above 85dB SPL. Speech oc-
curs at roughly 60dB SPL.

After decoding, CD audio is represented with 16-bit sam-
ples at a 44.1KHz sampling rate. If this were immediately
converted to an analog signal, the antialiasing filter would
have to block frequencies above 22.05KHz while passing
those below 20KHz, which would be difficult with analog
components. This filtering cannot be performed digitally,
because the aliasing is inherent to the sampling process;
it is the negative frequencies above 22.05KHz, and the
other iterations above that which must be removed. In-
stead, most systems interpolate to a 176.4KHz sampling
rate by inserting three zeros between each of the original
samples; because of the increased quality this offers, the bit
depth can also be reduced to 15. Next, frequencies between
22.05KHz and 88.2KHz are removed with a digital filter.
It is still necessary to use an analog antialiasing filter, but
now the filter can have a wider transition band that ranges
from 22.05KHz to 88.2KHz. The distortion produced by
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zero-order hold in the DAC can be corrected in either fil-
ter.

Although conventional quantization produces a linear rela-
tionship between sample values and output amplitudes, the
human perception of loudness varies logarithmically rel-
ative to amplitude. Companding exploits this fact by
using a non-linear quantization scale; this allows the sub-
jective quality of a 12-bit telephone signal to be produced
with only 8 bits. Companding can be implemented either
by passing the analog signal through a waveshaper before
the ADC, by sampling with a specialized non-linear ADC,
or by sampling at the higher bit depth and then converting
with a lookup table.

Linear predictive coding (LPC) produces a simplified
representation of human speech. The speech is sampled at
around 40 points per second, and at each point, parame-
ters are stored representing a sound source, the pitch of the
source, if it is pitched, and the filter coefficients of a vocal
formant. The sound source can be noise or a harmonically-
rich waveform. The data is used for speech synthesis or
speech recognition.

19.1 Non-linear processes

Sometimes non-linear processes are needed to produce de-
sired results. When a signal is contaminated by wideband
noise, the noise can be reduced by segmenting the signal,
translating each segment to the frequency domain, and
then modifying the resultant frequency response such that
high-magnitude components are retained, low-magnitude
components are discarded, and intermediate components
are attenuated smoothly between those extremes. The
modified frequency response is used to produce a custom
filter, which is then applied to the input segment. To avoid
abrupt changes in frequency content, segments are typically
made to overlap, and are windowed after filtering and then
recombined. Unlike the Wiener filter, the correction varies
from moment to moment, and there is no need to know the
signal and noise spectra in advance.

Homomorphic signal processing can be used to process
signals that result from non-linear operations. If two sig-
nals have been multiplied, the logarithm of their product
lnxh = lnx+ lnh. Since lnh is another periodic signal, it
can perhaps be removed with a conventional filter, though
the logarithm will add harmonics that also must be filtered.
Because negative values are found in the input, the com-
plex logarithm must be used. Also, because the logarithm
causes aliasing, the signal is often oversampled before be-
ing processed. After, the process is reversed by calculating

the exponent.

When signals are convolved, such that y = x ∗ h, the DFT
produces Y = X × H. Calculating the logarithm of the
spectrum lnY = lnX + lnH can allow lnH to be removed
by filtering the spectrum itself. The corrected spectrum is
produced by calculating the exponent, and the signal by
performing an inverse DFT.

20 Complex numbers

Representing some number a+bj as a point on the complex
plane allows that number to be expressed in polar terms,
with a vector that stretches from the origin to the point.
The magnitude of this vector:

M =
√
a2 + b2

while the phase angle or argument:

θ = arctan(b/a)

As expected:

a = M cos θ

b = M sin θ

This allows the point’s rectangular representation to be ex-
pressed in terms of its polar coordinates:

a+ bj = M cos θ + (M sin θ)j

20.1 Euler’s formula

Euler’s formula gives:

ejθ = cos θ + j sin θ

Therefore, the point’s polar representation can also be ex-
pressed as a complex exponential that gives the signal’s
complex amplitude:

a+ bj = Mejθ

Where complex numbers in the rectangular form are eas-
ily added and subtracted, numbers in this form are easily
multiplied and divided:

M1ejθ1 ×M2ejθ2 = M1M2ej(θ1+θ2)

Multiplying a complex number by j causes the coordinates
to be switched, with the real coordinate negated relative
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to the original imaginary coordinate. This produces a
90◦ counter-clockwise rotation within the complex plane,
around the origin. This is to be expected, since it rep-
resents multiplication by a unit vector with a 90◦ phase
angle.

Note that:

1

j
=

j

j2
= −j

Also, because cos(π/2) = 0 and sin(π/2) = 1:

j = cos
(π

2

)
+ j sin

(π
2

)
= ejπ/2

Because sin(−α) = −sin(α):

−j = cos
(
− π

2

)
+ j sin

(
− π

2

)
= e−jπ/2

21 Phasor transform

In the time domain, M cos(ωt+φ) produces a sinusoid with
frequency ω. If M and starting phase φ are interpreted as
polar coordinates, the point they reference:

M cosφ+ (M sinφ)j = a+ bj

= Mejφ

is called a phasor, and it identifies a specific signal within
the complex plane of sinusoids with frequency ω. Note that
the exponent is jφ, not j(ωt+φ), as might be obtained by
applying Euler’s relation in the time domain; the point rep-
resents the signal, it does not reproduce it, and in fact it
cannot, since it is not a function of t.

Returning to the time domain, since:

cos(α+ β) = cosα cosβ − sinα sinβ

it follows that:

M cos(ωt+ φ) = M(cosωt cosφ− sinωt sinφ)

= A cosωt+B sinωt

This is the same sinusoid, so it is represented by the same
point. Where the polar representation gives the magnitude
and phase of the sinusoid, this rectangular representation
defines it as a linear combination of zero-phase cosine and
sine waves with the same frequency ω. The phase of the
sinusoid is determined by the sign and relative weights of
the two rectangular components. Since:

A = M cosφ = a

B = −M sinφ = −b

the coefficients in the time domain relate directly to the
coordinates in the complex plane. Notice that the sine
component weight B = −b; for this reason, a time-domain
sine wave is represented in the phasor domain with −j.

Any sinusoid can be decomposed this way, and when two
of the same frequency are summed, their coefficients are
summed as well:

M1 cos(ωt+ φ1) +M2 cos(ωt+ φ2)

= (A1 +A2) cosωt+ (B1 +B2) sinωt

Therefore, the sum of two sinusoids with frequency ω
is given in the complex plane by the sum of their vec-
tor representations. This phasor transform simplifies
many operations by replacing time-domain representations
like M cos(ωt+φ) with phasor-domain representations like
a + bj and Mejφ. All sinusoids must have the same fre-
quency, and the operations must be linear.

Alternatively, since cos θ = Re(ejθ):

M cos(ωt+ φ) = Re(Mej(ωt+φ))

= Re(Mejφ · ejωt)

Since ejωt is fixed for all sinusoids in the plane, phasor
Mejφ again uniquely identifies M cos(ωt+ φ).

22 Circuit analysis

Because a linear system exhibits sinusoidal fidelity, so that
only the amplitude and phase of sinusoidal inputs are al-
lowed to change, its effect on input components of a par-
ticular frequency can be represented by a single polar-form
phasor that is multiplied by the input phasor to produce a
change in magnitude and a shift in the phase. A set of such
phasors can describe the amplitude and phase response of
the system in general. If the input and output signals are
known, these phasors can be determined by dividing the
output by the input at each frequency.

22.1 Inductance and capacitance

An inductor is typically constructed by winding a con-
ductor into a coil, often around a magnetic core. When
current flows through the coil, a magnetic field is created;
if the current changes, this field changes with it, inducing
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a voltage that opposes the change in current. The com-
ponent’s inductance L relates this voltage to the current
change:

vL(t) = L
diL(t)

dt

Inductors pass direct current while opposing alternating
current.

A capacitor is constructed from two conductive plates sep-
arated by a thin insulator called a dielectric. When there
is a difference in potential across the plates, a negative
charge accumulates on one of them, and an equivalent pos-
itive charge on the other. If the voltage remains constant,
the accumulated charge eventually comes to offset the po-
tential difference, and the current flow stops; if the voltage
changes in either direction, the current resumes. The com-
ponent’s capacitance C relates the current flow to the
change in voltage:

iC(t) = C
dvC(t)

dt

Capacitors pass alternating current while blocking direct
current.

The most general model of a circuit is produced by combin-
ing these expressions for each component and solving the
resultant differential equation; if the input is assumed to
be sinusoidal, however, a much simpler solution can found
using the phasor transform. If the current flowing through
an inductor:

iL(t) = sin(ωt)

then the induced voltage:

vL(t) = ωL cos(ωt)

Expressing these as phasors gives:

IL = −j
VL = ωL

22.2 Impedence

The ratio between the complex voltage amplitude and the
complex current is known as the impedence:

Z =
V

I

When the values are expressed as complex exponentials,
this shows how the magnitude and phase of the voltage re-
late to those of the sinusoidal current, just as Ohm’s law

relates voltage to a direct current. Therefore:

ZL =
VL
IL

= jωL

As expected, the magnitude of the impedence produced by
an inductor increases with the input frequency. Therefore,
as frequency increases, a higher voltage is needed to main-
tain a given flow of current.

Similarly, if:

vC = sin(ωt)

then:

iC = ωC cos(ωt)

and:

VC = −j

IC = ωC

ZC =
VC
IC

= − j

ωC

The magnitude of the impendence produced by a capacitor
decreases as the input frequency increases. Therefore, as
frequency increases, a lower voltage is needed to maintain
a given level of current.

Together, inductance and capacitance are known as reac-
tance, this being the component’s opposition to changes
in current or voltage. Reactance is the imaginary part of
the impedence:

X = ωL− 1

ωC

As shown, capacitance decreases total reactance. Given
resistance R:

Z = R+ jX

In fact, resistance can be understood as impedence with a
zero phase shift.

This circuit implements a notch filter, which is a band-
stop filter with a narrow stop band:

VI
ZR ZL ZC

VO
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If the components were all resistors, VO would be related to
VI by a voltage divider formula containing the associated
resistances. As it happens, this formula also works when
impedences are used, though a complex ratio is produced:

VO
VI

=
ZL + ZC

ZR + ZL + ZC

Substituting for ZR, ZL, and ZC , and separating the result
into real and imaginary parts gives the frequency response
of the filter, in rectangular coordinates:

H(ω) =
VO
VI

=
k2

R2 + k2
+ j

Rk

R2 + k2
,

for k = ωL− 1

ωC

Converting this to polar coordinates gives the amplitude
and phase response:

MagH(ω) =
k√

R2 + k2
PhH(ω) = arctan

(R
k

)

23 Complex DFT

In the complex DFT analysis equation, both x[n] and
X[k] represent complex numbers:

X[k] =
1

N

N−1∑
n=0

x[n] e−j2πk·n/N

=
1

N

N−1∑
n=0

x[n]
[

cos
(

2πk
n

N

)
− j sin

(
2πk

n

N

)]
Correlation with the cosine basis function produces the real
part of X[k], while correlation with the sine basis produces
the imaginary part.

In the real DFT, k runs from zero to N/2, so only posi-
tive frequencies are evaluated; in the complex DFT, both
positive and negative frequencies are evaluated. Because
cos(−α) = cosα and sin(−α) = − sinα, DFT value X[−k]
is seen to be the complex conjugate of X[k]. In the time
domain, because ejθ = cos θ+ j sin θ, it can be shown that:

cos θ =
ejθ + e−jθ

2
sin θ =

ejθ − e−jθ

2j

This allows:

cosωt =
1

2
ej(−ωt) +

1

2
ej(ωt)

sinωt =
1

2
jej(−ωt) − 1

2
jej(ωt)

which expresses either sinusoid as the sum of one complex
exponential at the negative frequency, and one at the pos-
itive. As a result, the basis functions of frequency −k and
k sum to produce a set of positive-frequency functions, as
expected.

Ordinarily, the real values of x[n] contain the time domain
signal, while the imaginary values are set to zero. When
this is done, the spectrum produced by Rex[n] displays
even symmetry in the real part of X[k], and odd symmetry
in the imaginary part. When Imx[n] contains time domain
data, its spectrum displays odd symmetry in the real part
of X[k], and even symmetry in the imaginary part.

Spectral values must be normalized before being processed
with the inverse DFT. After the real DFT, values 0 < k <
N/2 are scaled by a factor of two, but this is not necessary
for the complex DFT, as each of these is associated with
two sinusoids, one in the positive frequency range, and one
in the negative. By contrast, the k = 0 and k = N/2 val-
ues represent a single frequency each; therefore, there is no
need to scale these differently, and all values are normalized
with division by N .

The complex DFT synthesis equation:

x[n] =

N−1∑
k=0

X[k] ej2πk·n/N

Because X[k] = ReX[k] + j ImX[k], this produces:

x[n] =

N−1∑
k=0

ReX[k]
[

cos
(

2πk
n

N

)
+ j sin

(
2πk

n

N

)]
+

N−1∑
k=0

ImX[k]
[
j cos

(
2πk

n

N

)]
− sin

(
2πk

n

N

)
As demonstrated, each value in the frequency domain pro-
duces both a real and an imaginary sinusoid in the time do-
main. The values between zero and N/2 represent positive
frequencies, and each is matched by another value between
N/2 and N with an effectively negative frequency. The real
values of X[k] produce sinusoids cosα + j sinα, and since
sin(−α) = − sinα, the positive and negative frequencies
cancel the imaginary part to produce a single cosine com-
ponent. The imaginary values of X[k] produce sinusoids
j cosα − sinα. Because the imaginary spectrum has odd
symmetry, the values associated with negative frequencies
are themselves negated, and the two combine to produce
a single sine component. The cosine and sine components
together define a single sinusoid with the necessary ampli-
tude and phase.
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23.1 Other complex transforms

If T is the period of some periodic input, the complex
Fourier Series analysis equation gives:

X[k] =
1

T

∫ T

0

x(t) e−j2πk·t/T dt

In the complex Fourier Series synthesis equation:

x(t) =

∞∑
k=−∞

X[k] ej2πk·t/T

positive k represent positive frequencies, and negative k
negative frequencies.

The complex DTFT analysis equation:

X(ω) =
1

2π

∞∑
n=−∞

x[n] e−jωn

In the complex DTFT synthesis equation:

x[n] =

∫ 2π

0

X(ω) ejωn dω

ω values between zero and π represent positive frequencies,
while those between π and 2π represent negative.

The complex Fourier transform analysis equation:

X(ω) =
1

2π

∫ ∞
−∞

x(t) e−jωt dt

In the complex Fourier transform synthesis equa-
tion:

x(t) =

∫ ∞
−∞

X(ω) ejωt dω

positive ω represent positive frequencies, and negative ω
negative frequencies.

24 Laplace transform

The Laplace transform associates continuous time-
domain signals with signals in the Laplace domain, a
complex plane with frequency ω on the imaginary axis and
exponential weight σ on the real. This allows any point in
the Laplace domain to be identified with:

s = σ + jω

Each such point has a value that is also a complex number.
Given time-domain signal f(t), the value at s:

F (s) =

∫ ∞
−∞

f(t) e−st dt

Because e−st = e−σt · e−jωt the values for any fixed σ are
seen to equal the Fourier transform of f(t) e−σt. Therefore,
for negative σ, the time-domain signal is weighted by an
increasing exponential function that equals one where t is
zero, and has a steeper slope as σ becomes more negative.
For positive σ, the signal is weighted by a decreasing ex-
ponential function. Where σ is zero, the Laplace domain
values equal the complex Fourier transform of f(t).

Despite its similarity to the Fourier transform, the Laplace
transform is primarily used to solve differential equations.
Time domain functions are associated with functions in
the Laplace domain by solving Laplace integrals to pro-
duce Laplace pairs. Given function f(t) that is zero for
t ≥ 0−:

f(t) ⇔ F (s) =

∫ ∞
0−

f(t) e−st dt

From this, it can be shown that:

df(t)

dt
⇔ sF (s)− f(0)

These and other Laplace pairs allow systems of differential
equations to be represented as expressions of F (s). These
expressions can be solved algebraically, and Laplace pairs
or the inverse Laplace transform can then be used to
return the solutions to the time domain.

24.1 Transfer functions

Like the phasor transform, the Laplace transform can be
used to analyze circuits. Given input signal x(t) and a
linear system with impulse response h(t), the output:

y(t) = x(t) ∗ h(t)

As with the Fourier transform, moving the functions to the
Laplace domain produces:

Y (s) = X(s) ·H(s)

withH(s) being known as the system’s transfer function.
So, if the current flowing through an inductor:

iL(t) = sin(ωt)



24 LAPLACE TRANSFORM 28

then, because vL(t) = LdiL(t)
dt , the induced voltage:

vL(t) = ωL cos(ωt)

If the signal is assumed to start at t = 0, the Laplace pairs
for sine and cosine give:

IL(s) =
ω

ω2 + s2
VL(s) =

sLω

ω2 + s2

Alternatively, applying the Laplace pair for differentiation:

vL(t) = L
diL(t)

dt
⇔ VL(s) = sLIL(s)

Therefore, the inductor is represented in the Laplace do-
main by transfer function:

VL
IR

= sL

Similarly, a capacitor is represented by 1/sC, and a resistor
by R. The phasor transform is in fact seen to be a subset
of the Laplace transform, since σ = 0 produces s = jω.

Just as impedences can be combined in a voltage divider
to characterize an entire circuit, so can Laplace represen-
tations. The transfer function for a simple notch filter:

H(s) =
VO
VI

=
sL+ 1/sC

R+ sL+ 1/sC

This extends the frequency response H(ω) produced by the
phasor transform into the Laplace domain.

If the system is defined by a set of differential equations
(as any RLC circuit will be) the transfer function can be
expressed as a ratio of polynomials of s:

H(s) =
Ls2 + 1/C

Ls2 + Ls+ 1/C

Factoring these polynomials produces an equation of the
form:

H(s) =
(s− z1)(s− z2)(s− z3) · · ·
(s− p1)(s− p2)(s− p3) · · ·

The complex roots zn give the zeros of the filter, while the
roots pn give the poles. The transfer function for an RLC
circuit will contain one pole for each inductor or capacitor,
and a number of zeros equal to or less than the number of
poles. Inductors and capacitors create poles because they
store energy.

24.2 Filter design

Plotting the Laplace domain magnitude in three dimen-
sions shows the poles to be points where the function rises
to infinity, while the zeros are points where it drops to zero.
The placement of these points is often represented with a
pole-zero diagram that gives a top-down view of the do-
main, with poles marked as X’s and zeros as O’s. Immedi-
ately it is seen that the system’s frequency response H(ω) is
determined by the placement of these structures along the
frequency axis, along with their proximity thereto, since
H(ω) is the two-dimensional cross-section of the function
at σ = 0. The compromises inherent in filter design are
evident as well. The greatest stopband attenuation is cre-
ated by placing zeros on or near the frequency axis. Filter
roll-off is maximized by placing a pole very near some zero,
but if the zeros are near the frequency axis, this places the
pole near that axis as well, creating a sharp peak in the
passband.

Because second-order polynomials can be factored with the
quadratic equation, complex filters are often constructed by
combining multiple biquad filters, these being recursive
filters with two poles and two or fewer zeros. One common
biquad design is the Sallen-Key circuit:

−

+

A
VI

R R VO
C

C

After factoring this system’s transfer function, poles are
found at:

σ =
A− 3

2RC
ω =

±
√
−A2 + 6A− 5

2RC

Because:

σ2 + ω2 =
( 1

RC

)2
it is seen that both poles lie on a circle around the origin
with radius 1/RC. The circle intersects the vertical ω-axis
at the cutoff frequency, so that:

ωC = ± 1

RC

When A is one, the poles meet on the σ-axis, at the left
edge of the circle, where ω is zero; this creates a low-pass
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filter with a slow roll-off. As A increases, the poles sepa-
rate, approaching the ω-axis from either side of the circle;
the roll-off increases, and eventually a peak forms at ωC .
When A reaches three, the poles coincide with the ω-axis,
producing an infinite peak at the cutoff. Beyond this point
the filter becomes unstable, as does any filter with poles in
the right half of the Laplace domain.

When multiple Sallen-Key circuits are connected so that
their poles distribute evenly around the left half of the cir-
cle, a Butterworth filter is formed, producing the sharpest
possible roll-off without allowing ripple in the passband.
Because all poles fall on the same circle, all the circuits use
the same values of R and C.

If this even pole distribution is elongated along the ω-axis
to create an ellipse, a Chebyshev filter is formed, increas-
ing the rolloff but producing ripple in the passband. This
requires different values of R and C in the component cir-
cuits.

If zeros are placed on the ω-axis just past the cutoff
frequency, an elliptic filter is formed. This creates the
sharpest possible roll-off, but it produces ripple in both
the stopband and the passband. Filters of this type are
designed with elliptic rational functions.

A low-pass filter is converted to a high-pass filter by re-
placing all instances of s in the transfer function with 1/s.
In a Sallen-Key circuit, this is produced by exchanging the
resistors with the capacitors, which moves the poles and
places two zeros at the origin.

25 Z-transform

The z-transform is a refinement of the Laplace transform
that applies to discrete signals. The Laplace transform of
continuous signal x(t):

X(s) =

∫ ∞
−∞

x(t) e−st dt

with s = σ + jω. Therefore:

e−st = e−σt · e−jωt

If the same exponential weight is represented by:

r = eσ

and if:

z = r ejω

then a similar construction can serve in the z-domain, after
replacing time variable t with sample number n:

e−σn · e−jωn = (eσ · ejω)−n = (r ejω)−n = z−n

This gives the z-transform of discrete signal x[n]:

X(z) =

∞∑
n=−∞

x[n]z−n

Note that where s is interpreted in the Laplace domain as
a set of complex rectangular coordinates, z is interpreted
as a set of complex polar coordinates, giving the z-domain
very different properties. The magnitude coordinate r is
the base of the exponential curve. The argument ω, when
divided by 2π, is the frequency as a fraction of the sample
rate.

When eσ is one, the Laplace transform is equivalent to the
complex Fourier transform; the frequency response there-
fore follows the vertical ω-axis, and extends indefinitely in
both directions, since the frequency in a continuous sig-
nal could have any value. The z-transform is equivalent to
the DTFT when r is one; the frequency response follows
the unit circle, and repeats as ω grows in either direction.
When the input consists entirely of real values, the top
and bottom halves of both domains are symmetrical; in
each case, this produces a frequency response that is sym-
metrical for positive and negative frequencies.

Placing poles in the right half of the Laplace domain pro-
duces an unstable filter. In the z-domain, this happens
when poles are placed outside the unit circle.

25.1 Analyzing recursive systems

Just as continuous systems are described by differential
equations, discrete recursive systems are described by dif-
ference equations. In particular, recursive filters are imple-
mented with recursion equations:

y[n] =a0x[n] + a1x[n− 1] + a2x[n− 2] + · · ·
+ b1y[n− 1] + b2y[n− 2] + b3y[n− 3] + · · ·

Calculating the z-transform of both sides eventually allows
the transfer function to be expressed in terms of the filter
coefficients:

H[z] =
Y [z]

X[z]
=

a0 + a1z
−1 + a2z

−2 + · · ·
1− b1z−1 − b2z−2 − b3z−3 − · · ·

Note that this equation is sometimes written so that the b
terms are added, and the coefficients are negated to account
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for this. If negated coefficients are used in the original re-
cursion equation, the filter will unstable.

The order of a filter is the difference between the num-
ber of the current sample and the oldest sample used in
its difference equation. Negative exponents are used in the
general form of the transfer function because the order is
not known. When the order is known, the equation is com-
monly expressed with positive exponents. For a third-order
filter, this produces:

H[z] =
a0z

3 + a1z
2 + a2z + a3

z3 − b1z2 − b2z − b3
Filters are placed in series by multiplying their transfer
functions, or in parallel by adding them. New coefficients
can then be calculated to implement the combination.

Factoring the transfer function allows the filter to be de-
scribed as a collection of poles and zeros:

H[z] =
(z − z1)(z − z2)(z − z3) · · ·
(z − p1)(z − p2)(z − p3) · · ·

Conversely, a filter can be designed by placing poles and
zeros in the z-domain, expressing the transfer function in
terms of (z − zn) and (z − pn), multiplying these expres-
sions, and then collecting the zn terms and converting to
negative exponents to find the coefficients.

In some cases it is possible to relate the filter coefficients
directly to pole and zero positions. Given a biquad filter
with poles (rp,±ωp) and zeros (rz,±ωz):

a0 = 1

a1 = −2rz cosωz

a2 = r2z

b1 = 2rp cosωp

b2 = −r2p
Because it is found where the unit circle intersects the z-
domain, the frequency response H(ω) can be expressed
mathematically by setting r to one and then solving the
transfer function.

To produce a graph of the frequency response, the transfer
function is sometimes sampled along the unit circle; this
method does not account for the rounding error that accu-
mulates as values are cycled through recursive equations,
however, and the resulting noise can make the filter unsta-
ble. As an alternative, the recursion equation can be used
to generate an impulse response, and the Fourier trans-
form can be applied to find its spectrum. A sufficiently
large number of samples must be used; if a larger sample
length produces a similar spectrum, it can be assumed that
the original length is adequate.

25.2 Manipulating filters

If their passbands overlap, a low-pass filter can be placed
in series with a high-pass filter to create a band-pass fil-
ter. If they do not overlap, they can be combined in par-
allel to create a band-stop filter. These combinations are
implemented by multiplying or adding transfer functions,
respectively.

Filters can be modified with spectral inversion, which in-
verts the frequency response by adding a copy of the source
signal to a negated copy of the original filter output. When
applied to a recursive filter, the b coefficients remain un-
changed, while the new a coefficients:

a′0 = 1− a0
a′1 = −a1 − b1
a′2 = −a2 − b2
a′3 = −a3 − b3

...

This typically produces poor results with recursive filters,
however, because of the phase shift they produce.

A filter’s gain can be adjusted by multiplying each of the a
coefficients by a common gain factor. To produce a unity-
gain low pass filter, the filter’s natural gain must be de-
termined at the zero frequency. This is done by setting
all input values in the recursion equation to one, and all
output values to the gain g, so that:

g = a0 + a1 + a2 + · · ·+ b1g + b2g + b3g + · · ·

This yields:

g =
a0 + a1 + a2 + · · ·

1− b1 − b2 − b3 − · · ·

To produce a unity-gain high pass filter, the gain at the
Nyquist frequency must be determined. This is done by
setting alternating input values to one or negative one, so
that:

g = a0 − a1 + a2 − · · · − b1g + b2g − b3g + · · ·

This yields:

g =
a0 − a1 + a2 − · · ·

1 + b1 − b2 + b3 − · · ·
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25.3 Filter transforms

The bilinear transform is used to change continuous-
time analog filters into discrete-time digital filters. The
stability of the original filter is preserved, and each point
on the vertical frequency response in the Laplace domain is
mapped to a point on the circular z-domain response. Fea-
tures in the original response are increasingly compressed
as the frequency rises, since that response is infinite and the
z-domain response is finite. This frequency warping shifts
points to lower frequencies in the new response.

The transform is effected by replacing instances of s in the
original transfer function so that:

s→ 2(z − 1)

T (z + 1)
T = 2 tan

(
1

2

)

The poles of a Butterworth filter are equally spaced around
a circle in the Laplace domain, and the intersection of this
circle with the ω axis gives the cutoff frequency ωC of the
filter, in radians per second. Starting with a recursive low-
pass filter with ωC = 1, a new filter with cutoff ω′C can be
created by applying a low-pass to low-pass transform
to the transfer function:

z−1 → z−1 − k
1− kz−1

k =
sin
(
1
2 (1− ω′C)

)
sin
(
1
2 (1 + ω′C)

)
Given a biquad filter with coefficients a0, a1, a2, b1, and

b2, this produces new coefficients:

a′0 =
a0 − a1k + a2k

2

D

a′1 =
−2a0k + a1(1 + k2)− 2a2k

D

a′2 =
a0k

2 − a1k + a2
D

b′1 =
2k + b1(1 + k2)− 2b2k

D

b′2 =
−k2 − b1k + b2

D

with:

D = 1 + b1k − b2k2

Similarly, a low-pass to high-pass transform can be
used to change the cutoff and create a high-pass filter:

z−1 → −z
−1 − k

1 + kz−1
k = −

cos
(
1
2 (ω′C + 1)

)
cos
(
1
2 (ω′C − 1)

)
When applied to a biquad filter, this produces the same
coefficients as the low-pass to low-pass transform, except
that k is defined differently and a′1 and b′1 are negated.
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